精英家教网 > 高中数学 > 题目详情
已知Sn是等比数列{an}的公比q>1且Sn是它的前n项的和.若a1+a3=5,S3=7.
(1)求数列{an}的通项公式;
(2)设bn=
5
2
+log2an,求数列{bn}的前n项和Tn
考点:数列的求和,等比数列的通项公式
专题:等差数列与等比数列
分析:解:(1)利用等比数列的通项公式可得a1+a1q2=5,a1+a1q+a1q2=7,解得a1,q.即可得出an
(2)bn=
5
2
+log2an=
5
2
+log22n-1
=n+
3
2
.利用等差数列的前n项和公式可得数列{bn}的前n项和Tn
解答: 解:(1)∵a1+a3=5,S3=7,
a1+a1q2=5,a1+a1q+a1q2=7,
解得a1=1,q=2.
∴an=2n-1
(2)bn=
5
2
+log2an=
5
2
+log22n-1
=n+
3
2

∴数列{bn}的前n项和Tn=
n(
5
2
+n+
3
2
)
2
=
n2+4n
2
点评:本题考查了等差数列与等比数列的通项公式、前n项和公式、对数的运算性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
mx2+mx+1
的定义域是一切实数,则m的取值范围是(  )
A、0<m≤4B、0≤m≤1
C、m≥4D、0≤m≤4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+…+
1
2n
an=
n2+n
2
(n∈N*
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:方程2x2+x+a=0的两根x1,x2满足x1<1<x2,命题q:函数y=log2(ax-1)在区间[1,2]内单调递增.
(Ⅰ)若p为真命题,求实数a的取值范围;
(Ⅱ)试问:p∧q是否有可能为真命题?若有可能,求出a的取值范围;若不可能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,不等式组
x+y≥0
x-y+4≥0
x≤a
表示平面区域面积是4,则常数a的值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:2an+1=an+an+2(n∈N*),它的前n项和为Sn,且a3=10,S6=72
(1)求通项an
(2)若bn=
1
2
an-30,求数列{bn}的前n项和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的各项均为正实数,且其前n项和Sn满足2Sn=an2+an(n∈N*).
(1)证明:数列{an}是等差数列;
(2)设bn=
1
anan+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

“k=-1”是“直线l:y=kx+2k-1在坐标轴上截距相等”的(  )条件.
A、充分必要
B、充分不必要
C、必要不充分
D、既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2ex,则f′(1)=
 

查看答案和解析>>

同步练习册答案