2£®Ö±½Ç×ø±êϵÖУ¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«Öᣬ²¢ÔÚÁ½ÖÖ×ø±êϵÖÐÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£®Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßcµÄ¼«×ø±ê·½³ÌΪ¦Ñ2-10¦Ñcos¦È+9=0£¬µãPÊÇÖ±ÏßlÉϵĵ㣬¹ýµãPµÄÖ±ÏßÓëÇúÏßcÏàÇÐÓÚµãM£¬Ôò|PM|×îСֵΪ4£®

·ÖÎö Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¼´¿É»¯ÎªÖ±½Ç×ø±ê·½³Ì£»ÀûÓÃ$\left\{\begin{array}{l}{{¦Ñ}^{2}={x}^{2}+{y}^{2}}\\{x=¦Ñcos¦È}\end{array}\right.$¼´¿É°ÑÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ2-10¦Ñcos¦È+9=0£¬»¯ÎªÖ±½Ç×ø±ê·½³Ì£®
µ±PC¡Ílʱ£¬|PM|È¡µÃ×îСֵ=$\sqrt{|PC{|}^{2}-{r}^{2}}$£®

½â´ð ½â£ºÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬»¯Îªx+y+3=0£»
ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2-10¦Ñcos¦È+9=0£¬»¯Îªx2+y2-10x+9=0£¬Å䷽Ϊ£¨x-5£©2+y2=16£®
µ±PC¡Ílʱ£¬|PM|È¡µÃ×îСֵ=$\sqrt{|PC{|}^{2}-{r}^{2}}$=$\sqrt{£¨\frac{5+0+3}{\sqrt{2}}£©^{2}-16}$=4£®
¹Ê´ð°¸Îª£º4£®

µãÆÀ ±¾Ì⿼²éÁ˰ѲÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Ô²µÄÇÐÏßµÄÐÔÖÊ¡¢¹´¹É¶¨Àí£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Å×ÎïÏßy=$\frac{1}{8}$x2Éϵ½½¹µãµÄ¾àÀëµÈÓÚ10µÄµãµÄ×ø±êΪ£¨¡¡¡¡£©
A£®£¨-8£¬8£©B£®£¨8£¬8£©C£®£¨-8£¬-8£©»ò£¨8£¬-8£©D£®£¨-8£¬8£©»ò£¨8£¬8£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®º¯Êý$f£¨x£©=4cos£¨\frac{x}{2}+\frac{¦Ð}{3}£©$£¨x¡ÊR£©µÄ×îСÕýÖÜÆÚΪ4¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®º¯Êýy=£¨sin2x£©2µÄÖÜÆÚΪ$\frac{¦Ð}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®PÊÇÕýÁù±ßÐÎABCDEFijһ±ßÉÏÒ»µã£¬$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AF}$£¬Ôòx+yµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®4B£®5C£®6D£®7

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢CµÄ¶Ô±ßΪa¡¢b¡¢c£¬Ôò¡°A=B¡±³ÉÁ¢µÄ±ØÒª²»³ä·ÖÌõ¼þΪ£¨¡¡¡¡£©
A£®cosA=cosBB£®sinA=sinBC£®bcosA=acosBD£®acosA=bcosB

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÈçͼËùʾµÄ³ÌÐò¿òͼÖУ¬Èôº¯ÊýF£¨x£©=f£¨x£©-m£¨0£¼m£¼2£©×ÜÓÐËĸöÁãµã£¬ÔòaµÄȡֵ·¶Î§ÊÇa¡Ü-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{3}$x3+$\frac{{{a^2}-1}}{2}$x2-a2x+a£¬x¡ÊR£¬a¡ÊR£®
£¨1£©Èôº¯Êýf£¨x£©ÔÚÇø¼ä[0£¬2]ÄÚÇ¡ÓÐÁ½¸öÁãµã£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©Èôa=-1£¬É躯Êýf£¨x£©ÔÚÇø¼ä[t£¬t+3]ÉϵÄ×î´óֵΪM£¨t£©£¬×îСֵΪm£¨t£©£¬¼ÇF£¨t£©=M£¨t£©-m£¨t£©£¬Çóº¯ÊýF£¨t£©ÔÚÇø¼ä[-3£¬-1]ÉϵÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{{e}^{-x}-2£¨x¡Ü0£©}\\{2ax-1£¨x£¾0£©}\end{array}\right.$£¨aÊdz£Êý£¬ÇÒa£¾0£©£®¶ÔÓÚÏÂÁÐÃüÌ⣺¢Ùº¯Êýf£¨x£©µÄ×îСֵÊÇ-1£»¢Úº¯Êýf£¨x£©ÔÚRÉÏÊǵ¥µ÷º¯Êý£»¢ÛÈôf£¨x£©£¾0ÔÚ[$\frac{1}{2}$£¬+¡Þ£©ÉϺã³ÉÁ¢£¬ÔòaµÄȡֵ·¶Î§ÊÇa£¾1£»¢Ü¶ÔÈÎÒâx1£¼0£¬x2£¼0ÇÒx1¡Ùx2£¬ºãÓÐf£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©£¾$\frac{f£¨{x}_{1}£©+f£¨{x}_{2}£©}{2}$£®ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÚB£®¢Ù¢ÛC£®¢Û¢ÜD£®¢Ú¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸