精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点F1,F2,点P在椭圆上,则△PF1F2的面积最大值是
 
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:求出椭圆的焦点坐标,判断三角形的面积的最大值的位置,然后求解即可.
解答: 解:椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点F1,F2,则|F1F2|=2c,是定值,点P在椭圆上,则△PF1F2的面积最大值是P到x轴的距离最大时,三角形的面积最大,
此时三角形的面积为:
1
2
×2c×b
=bc=b
a2-b2

故答案为:b
a2-b2
点评:本题考查椭圆的简单性质的应用,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对实数a和b,定义运算“?”:a?b=
a,a-b≤1
b,a-b>1
,设函数f(x)=(x2-2)?(x-1),x∈R,
(1)求函数f(x)的单调区间;
(2)若函数f(x)=c恰有两个实根,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是正方形,E,F分别在PC,BD上,
CE
CP
=
BF
BD
=
1
3
,侧面PAD⊥底面AB-CD,且PA=PD=
2
,AD=2.
(1)求证:EF∥平面PAD;
(2)求证:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为平面ABC内任一点,若A,B,C三点共线,是否存在α,β∈R,使
OC
OA
OB
,其中α+β=1?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式ax2-2ax+1>0
(1)若对于一切实数x都成立,求a的取值范围;
(2)若对于a∈[1,2]恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
25
+
y2
16
=1的左右焦点分别为F1、F2,P是椭圆上一点,且满足|PF2|=|F1F2|,那么△PF1F2的面积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
tan(
x
2
+
π
3
)
的周期和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sinx+sin(
3
+x)的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=2sin2x+2
3
sinxcosx+1,则函数f(x)的最小正周期为(  )
A、2π
B、
2
C、π
D、
π
2

查看答案和解析>>

同步练习册答案