精英家教网 > 高中数学 > 题目详情
1.已知等比数列{an}首项为2,前2m项满足a1+a3+…+a2m-1=170,a2+a4+…+a2m=340,则正整数m=4.

分析 利用等比数列的性质先求出公比,再由等比数列前n项和公式列出前2m项和的方程,由此能求出正整数m.

解答 解:∵等比数列{an}首项为2,前2m项满足a1+a3+…+a2m-1=170,a2+a4+…+a2m=340,
∴公比q=$\frac{{a}_{2}+{a}_{4}+…+{a}_{2m}}{{a}_{1}+{a}_{3}+…+{a}_{2m-1}}$=$\frac{340}{170}$=2,
${S}_{2m}=\frac{2(1-{2}^{2m})}{1-2}=170+340=510$,
解得m=4.
故答案为:4.

点评 本题考查等比数列通项公式、前n项和公式等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.对于函数f(x),若在定义域内存在实数x0,满足f(-x0)=-f(x0),则称f(x)为“M类函数”.
(1)已知函数f(x)=sin(x+$\frac{π}{3}$),试判断f(x)是否为“M类函数”?并说明理由;
(2)设f(x)=2x+m是定义在[-1,1]上的“M类函数”,求实数m的最小值;
(3)若f(x)=$\left\{\begin{array}{l}{log_2}({x^2}-2mx)\\-3\end{array}\right.\begin{array}{l}{,\;\;x≥2}\\{,\;\;x<2}\end{array}$为其定义域上的“M类函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的前n项和为Sn,且an=4n,若不等式Sn+8≥λn对任意的n∈N*都成立,则实数λ的取值范围为(-∞,10].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若直线x+ay-1=0与2x+4y-3=0平行,则${({x+\frac{1}{x}-a})^5}$的展开式中x的系数为210.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知在等腰△AOB中,若|OA|=|OB|=5,且$|{\overrightarrow{OA}+\overrightarrow{OB}}|≥\frac{1}{2}|{\overrightarrow{AB}}|$,则$\overrightarrow{OA}•\overrightarrow{OB}$的取值范围是(  )
A.[-15,25)B.[-15,15]C.[0,25)D.[0,15]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=2$\sqrt{2}$cos($\frac{π}{4}$-θ)
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)已知直线l过点P(1,0)且与曲线C交于A,B两点,若|PA|+|PB|=$\sqrt{5}$,求直线l的倾斜角α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在五面体ABCDEF中,面CDE和面ABF都为等边三角形,面ABCD是等腰梯形,点P、Q分别是CD、AB的中点,FQ∥EP,PF=PQ,AB=2CD=2.
(1)求证:平面ABF⊥平面PQFE;
(2)若PQ与平面ABF所成的角为$\frac{π}{3}$,求三棱锥P-QDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列结论正确的是④.
①(x2-4x)(x+$\frac{1}{x}$)9的展开式中x2的系数为-210;
②在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;
③已知命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”的逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上是减函数”,是真命题;
④不等式ax2-(2a-3)x-1>0对?x>1恒成立的充要条件是0≤a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线m,n与平面α,β,γ满足α⊥β,α∩β=m,n⊥α,n?γ,则下列判断一定正确的是(  )
A.m∥γ,α⊥γB.n∥β,α⊥γC.β∥γ,α⊥γD.m⊥n,α⊥γ

查看答案和解析>>

同步练习册答案