精英家教网 > 高中数学 > 题目详情
2.有如下命题:命题p:设集合M={x|0<x≤3},N={x|0<x≤2},则“a∈M”是“a∈N”的充分而不必要条件;命题q:“?x0∈R,x02-x0-1>0”的否定是“?x∈R,x2-x-1≤0”,则下列命题中为真命题的是(  )
A.p∧qB.p∧(¬q)C.p∨qD.p∨(¬q)

分析 首先判断出命题p的真假,进一步判断出命题q的真假,最后利用真值表求出结论

解答 解:命题p:设集合M={x|0<x≤3},N={x|0<x≤2},
则“a∈M”是“a∈N”的充分而不必要条件.
p是假命题.
命题q:“?x0∈R,x02-x0-1>0”的否定是:
“?x∈R,x2-x-1≤0”,
则:q是真命题.
所以:p∨q是真命题.
故选:C.

点评 本题考查的知识要点:命题真假的判断,及真值表的应用.属于基础题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),短轴的一个端点与两个焦点的连线构成面积为2的等腰直角三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(1,0)的直线l与椭圆C相交于A,B两点.点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1•k2最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数z满足(z+2)(1-i)=2(i为虚数单位),则z=(  )
A.1-iB.1+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.四边形OABC中,$\overrightarrow{CB}=\frac{1}{2}\overrightarrow{OA}$,若$\overrightarrow{OA}=\overrightarrow a$,$\overrightarrow{OC}=\overrightarrow b$,则$\overrightarrow{AB}$=(  )
A.$\overrightarrow a-\frac{1}{2}\overrightarrow b$B.$\frac{\overrightarrow a}{2}-\overrightarrow b$C.$\overrightarrow b+\frac{\overrightarrow a}{2}$D.$\overrightarrow b-\frac{1}{2}\overrightarrow a$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果10N的力能使弹簧压缩10cm,为在弹性限度内将弹簧拉长6cm,则力所做的功为(  )
A.0.12 JB.0.18 JC.0.26 JD.0.28 J

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}为等比数列,a2=2,a5=$\frac{1}{4}$,则a1a2+a2a3+…+anan+1=(  )
A.16(1-$\frac{1}{{2}^{n}}$)B.16(1-$\frac{1}{{4}^{n}}$)C.$\frac{32}{3}$(1-$\frac{1}{{2}^{n}}$)D.$\frac{32}{3}$(1-$\frac{1}{{4}^{n}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知角β的终边在直线$y=-\sqrt{3}x$上,且-180°≤β≤180°,则β=-60°或120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知cosx+siny=$\frac{1}{2}$,求z=asiny+cos2x,(a∈R)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了解某班学生喜欢打篮球是否与性别有关,对本班50人进行了问卷调查得到了下表:
喜爱打篮球不喜爱打篮球合计
男生20525
女生1015[25
合计302050
下面的临界值表供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
则根据以下参考公式可得随机变量K2的值(保留三位小数),你认为有多大的把握认为喜爱打篮球与性别有关.(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案