精英家教网 > 高中数学 > 题目详情
如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切),已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为(  )
A、y=
1
2
x3-
1
2
x2-x
B、y=
1
2
x3+
1
2
x2-3x
C、y=
1
4
x3-x
D、y=
1
4
x3+
1
2
x2-2x
考点:导数的几何意义,函数解析式的求解及常用方法
专题:导数的概念及应用
分析:由题设,“需要一段环湖弯曲路段与两条直道平滑连接(相切)“可得出此两点处的切线正是两条直道所在直线,由此规律验证四个选项即可得出答案.
解答: 解:由函数图象知,此三次函数在(0,0)上处与直线y=-x相切,在(2,0)点处与y=3x-6相切,下研究四个选项中函数在两点处的切线.
A、y=
3
2
x2-x-1
,将0,2代入,解得此时切线的斜率分别是-1,3,符合题意,故A正确;
B、y=
3
2
x2+x-3
,将0代入,此时导数为-3,不为-1,故B错误;
C、y=
3
4
x2-1
,将2代入,此时导数为-1,与点(2,0)处切线斜率为3矛盾,故C错误;
D、y=
3
4
x2+x-2
,将0代入,此时导数为-2,与点(0,0)处切线斜率为-1矛盾,故D错误.
故选:A.
点评:本题考查导数的几何意义在实际问题中的应用,导数的几何意义是导数主要应用之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,|
AB
|=1,|
AC
|=2且
AB
AC
的夹角为
π
3
,则BC边上的中线AD的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[-2,3]上随机选取一个数X,则X≤1的概率为(  )
A、
4
5
B、
3
5
C、
2
5
D、
1
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b∈R,则“a>b”是“a|a|>b|b|”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设θ为两个非零向量
a
b
的夹角,已知对任意实数t,|
b
+t
a
|的最小值为1.(  )
A、若θ确定,则|
a
|唯一确定
B、若θ确定,则|
b
|唯一确定
C、若|
a
|确定,则θ唯一确定
D、若|
b
|确定,则θ唯一确定

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>b>0,c<d<0,则一定有(  )
A、
a
d
b
c
B、
a
d
b
c
C、
a
c
b
d
D、
a
c
b
d

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=(-1)n-1
4n
anan+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).
(1)若a1=-2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn
(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2-
1
ln2
,求数列{
an
bn
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的偶函数f(x)满足对?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-loga(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是
 

查看答案和解析>>

同步练习册答案