精英家教网 > 高中数学 > 题目详情
要得到函数y=cos2x的图象,需将函数y=sin(2x+
π
3
)的图象向左至少平移
 
个单位.
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.
解答: 解:y=cos2x=sin(2x+
π
2
),
π
2
-
π
3
=
π
6
,把将函数y=sin(2x+
π
3
)的图象向左至少平移
π
12
个单位,
可得函数ysin[2(x+
π
12
)+
π
3
]=sin(2x+
π
2
)=cos2x的图象,
故答案为:
π
12
点评:本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于x的方程x2+(1+a)x-2a=0两根分别在(0,1)与(1,2)内,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义行列式运算
.
a1a2
b1b2
.
=a1b2-a2b2,将函数f(x)=
.
3
sin2x
1cos2x
.
的图象向左平移t(t>0)个单位,所得图象对应的函数为奇函数,则t的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)上任意一点,过点P的直线与两渐近线分别交于P1,P2,设λ=
P1P
PP2
,求证:S△OP1P2=
(1+λ)2
4|λ|
ab.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的一般方程为:x2+y2-2x+2y-2=0
(1)过点P(3,4)作圆C的切线,求切线方程;
(2)直线l在x,y轴上的截距相等,且l与圆C交于A,B两点,弦长|AB|=2
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面上,已知
AB1
AB2
,|
OB1
|=|
OB2
|=1,
AP
=
AB1
+
AB2
,若|
OP
|<
1
2
,则|
OA
|的取值范围是(  )
A、(0,
5
2
]
B、(
5
2
7
2
)
C、(
5
2
2
]
D、(
7
2
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

假设关于某种设备的使用年限x(年)与所支出的维修费用y(万元)有如下统计资料:
x23456
y235.56.58
(1)求出y关于x的线性回归方程;
(2)估计使用年限期完成为10时的维修费用y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x2+2x-3|,若关于x的方程f2(x)-(a+2)f(x)+a2-2a=0有5个不等实根,则实数a值是(  )
A、2B、4C、2或4D、不确定的

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)满足f(x+1)=f(x-1),且x∈[-1,1]时,f(x)=x2,则函数y=f(x)与y=log3|x|的图象的交点的个数是
 

查看答案和解析>>

同步练习册答案