精英家教网 > 高中数学 > 题目详情
4.对任意实数a,b,c,给出下列命题:
①“a=b”是“ac=bc”的充要条件;
②“a+5是无理数”是“a是无理数”的充要条件;
③“a>b”是“a2>b2”的充分条件;
④“a<4”是“a<3”的必要条件;
其中真命题的个数是(  )
A.1个B.2个C.3个D.4个

分析 逐项判断即可.①由ac=bc不能推出a=b;②由5是有理数易判断;③根据不等式的性质可得;④根据充分必要条件的定义易得.

解答 解:①由“a=b“可得ac=bc,但当ac=bc时,不能得到a=b,故“a=b”是“ac=bc”的充分不必要条件,故①错误;
②因为5是有理数,所以当a+5是无理数时,a必为无理数,反之也成立,故②正确;
③取a=1,b=-2,此时a2<b2,故③错误;
④当a<4时,不能推出a<3;当a<3时,有a<4成立,故“a<4”是“a<3”的必要不充分条件,故④正确.
综上可得正确的命题有2个.
故选:B.

点评 本题考查充分必要条件的判断,掌握充分必要条件的定义是关键.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,若输出的S=$\frac{2016}{1024}$,判断框内填入的条件可以是(  )
A.n<10B.n≤10C.n≤1024D.n<1024

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.有下列命题:
①在函数y=cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)的图象中,相邻两个对称中心的距离为π;
②命题:“若a=0,则ab=0”的否命题是“若a=0,则ab≠0”;
③“a≠5且b≠-5”是“a+b≠0”的必要不充分条件;
④已知命题p:对任意的x∈R,都有sin≤1,则¬p是:存在x0∈R,使得sinx0>1;
⑤命题“若0<a<1,则loga(a+1)>loga(1+$\frac{1}{a}$)”是真命题;
⑥|$\overrightarrow{a}$-$\overrightarrow{b}$|≤|$\overrightarrow{a}$+$\overrightarrow{b}$|恒成立;
⑦若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$⊥$\overrightarrow{b}$;  
其中所有真命题的序号是③④⑤⑦.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若不等式($\frac{1}{2}$)x+($\frac{1}{3}$)x-m≥0在x∈(-∞,1]时恒成立,则实数m的取值范围是(-∞,$\frac{5}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知Rt△ABC的周长为定值2,则它的面积最大值为3-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知关于x的不等式(4kx-k2-12k-9)(2x-11)>0,其中k∈R;
(1)试求不等式的解集A;
(2)对于不等式的解集A,记B=A∩Z(其中Z为整数集),若集合B为有限集,求实数k的取值范围,使得集合B中元素个数最少,并用列举法表示集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.我们把b除a的余数r记为r=abmodb,例如4=9bmod5,如图所示,若输入a=209,b=77,则循环体“r←abmodb”被执行了4次.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如果函数f(x)=-x2+bx+c,对称轴为x=2,则f(1)、f(2)、f(4)大小关系是f(2)>f(1)>f(4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知2a+3b=4,则4a+8b的最小值为8.

查看答案和解析>>

同步练习册答案