精英家教网 > 高中数学 > 题目详情
19.双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的焦距为10.

分析 利用双曲线的方程求解焦距即可.

解答 解:双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的a=3,b=4,则c=5,2c=10.
双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的焦距为:10.
故答案为:10.

点评 本题考查双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.四面体ABCD的四个顶点都在球O的球面上,AB=AD=CD=2,BD=2$\sqrt{2}$,BD⊥CD,平面ABD⊥平面BCD,则球O的体积为(  )
A.4$\sqrt{3}$πB.$\frac{\sqrt{3}}{2}$πC.$\frac{8\sqrt{2}}{3}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.为了得到函数y=cos(2x-$\frac{2π}{3}}$)的图象,可以将函数y=cos2x的图象(  )
A.向左平移$\frac{π}{6}$个单位长度B.向左平移$\frac{π}{3}$个单位长度
C.向右平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若全集U={-2,-1,0,1,2},A={x∈Z|x2<3},则∁IA=(  )
A.{-2,2}B.{-2,0,2}C.{-2,-1,2}D.{-2,-1,0,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.倾斜角为60°的直线与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)交于A,B两点,若$\overrightarrow{OA}$+$\overrightarrow{OB}$与$\overrightarrow{a}$=(4,-$\sqrt{3}$)共线,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若直线l1:2x-ay-1=0与直线l2:x+2y=0垂直,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为(  )
A.$\frac{8}{3}$B.4C.8D.$8\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(x2+ax-a)$\sqrt{x}$.
(1)若a=-4时,求函数f(x)的极值;
(2)若函数f(x)在区间(1,2)上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|2x-1|+|x-a|.
(1)当a=2时,解不等式:f(x)≤x+3
(2)当x,y∈Z,则称点P(x,y)为平面上单调格点;若(2x,y)或(x,2y)为格点,则称点P(x,y)为半格点.设Q={(x,y)|$\left\{\begin{array}{l}{0≤x≤2}\\{0≤x≤3}\end{array}\right.$},A={(x,y)|f(x)≤y≤3,a=2}.
①求从区域Ω中任取一点P,而该点落在区域A上的概率;
②求从区域Ω中的所有格点或半格点中任取一点P,而该点是区域A上的格点或半格点的概率.

查看答案和解析>>

同步练习册答案