分析 (1)利用三角恒等变换化简函数f(x),求出最小正周期T,写出它的减区间;
(2)根据x的取值范围,计算对应x+$\frac{π}{4}$的取值范围,从而求出f(x)的最值.
解答 解;(1)函数f(x)=$\sqrt{2}$sin$\frac{x}{2}$cos$\frac{x}{2}$-$\sqrt{2}$sin2$\frac{x}{2}$
=$\frac{\sqrt{2}}{2}$sinx-$\frac{\sqrt{2}}{2}$(1-cosx)
=sin(x+$\frac{π}{4}$)-$\frac{\sqrt{2}}{2}$;
∴最小正周期为T=2π,
令$\frac{π}{2}$+2kπ≤x+$\frac{π}{4}$≤$\frac{3π}{2}$+2kπ,k∈Z,
则$\frac{π}{4}$+2kπ≤x≤$\frac{5π}{4}$+2kπ,k∈Z,
∴f(x)的减区间为$[{\frac{π}{4}+2kπ,\frac{5π}{4}+2kπ}],k∈Z$;
(2)∵x∈[-π,0],∴$x+\frac{π}{4}∈[{-\frac{3π}{4},\frac{π}{4}}]$,
当$x+\frac{π}{4}=-\frac{π}{2}$,即$x=-\frac{3π}{4}$时,f(x)有最小值为-1-$\frac{\sqrt{2}}{2}$;
当$x+\frac{π}{4}=\frac{π}{4}$,即x=0时,f(x)有最大值为0.
点评 本题考查了三角恒等变换与三角函数的图象和性质的应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | 圆 | B. | 椭圆 | C. | 双曲线 | D. | 抛物线 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 锐角三角形 | B. | 钝角三角形 | ||
| C. | 等腰直角三角形 | D. | 等腰或直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com