精英家教网 > 高中数学 > 题目详情
14.函数f(x)=x3+ax2+3x-9已知f(x)在x=-3时取得极值,则a=(  )
A.2B.3C.4D.5

分析 先对函数进行求导,根据函数f(x)在x=-3时取得极值,可以得到f′(-3)=0,代入求a值.

解答 解:对函数求导可得,f′(x)=3x2+2ax+3
∵f(x)在x=-3时取得极值 
∴f′(-3)=0⇒a=5,验证知,符合题意
故选:D.

点评 本题主要考查函数在某点取得极值的性质.属基础题.比较容易,要求考生只要熟练掌握基本概念,即可解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.△ABC满足$\overrightarrow{AB}$•$\overrightarrow{AC}$=2$\sqrt{3}$,∠BAC=30°,设M是△ABC内的一点(不含边界),定义f(M)=(x,y,z),其中x,y,z分别表示△MBC,△MCA,△MAB的面积,若f(M)=(x,y,$\frac{1}{3}$),则$\frac{1}{x}$+$\frac{4}{y}$的最小值为(  )
A.4B.6C.9D.$\frac{27}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在平面直角坐标系xOy中,抛物线C:y2=2px(p>0)的焦点为F,M是抛物线C上的点,若△OFM的外接圆与抛物线C的准线相切,且该圆面积9π,则p=(  )
A.2B.4C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U=R,函数f(x)=$\sqrt{{2}^{x}-{5}^{x}}$的定义域为M,则∁UM=(  )
A.(-∞,0]B.(0,+∞)C.(-∞,0)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列不等式中成立的是(  )
A.若a>b,则ac2>bc2B.若a>b,则a2>b2
C.若a>b,c>d,则a-c>b-dD.若a<b<0,则$\frac{1}{a}$>$\frac{1}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x3+$\frac{5}{2}$x2+ax+b,g(x)=x3+$\frac{7}{2}$x2+lnx+b,(a,b为常数)
(1)若g(x)在x=1处切线过点(0,-5),求b的值
(2)令F(x)=f(x)-g(x),若函数F(x)存在极值,且所有极值之和大于5+ln2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=lnx,f′(x)是f(x)的导数,f′(x)的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=ex(sinx-2)在区间[0,2π]上的最大值是(  )
A.-2B.-2eC.-2eπD.-${e}^{\frac{π}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax+$\frac{b}{x}$+c(a>0),g(x)=lnx,其中函数f(x)的图象在点(1,f(1))处的切线方程为y=x-1.
(Ⅰ)若a=1,求函数f(x)的解析式;
(Ⅱ)若f(x)≥g(x)在[1,+∞)上恒成立,求实数a的取值范围;
(Ⅲ)证明:1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}>ln(n+1)+\frac{n}{2(n+1)}$(n≥1).

查看答案和解析>>

同步练习册答案