分析 利用柯西不等式即可求解.
解答 解:(1)由柯西不等式,
得:(x2+y2+z2)(12+22+12)≥(x+2y+z)2
即:6(x2+y2+z2)≥42,
∴x2+y2+z2≥$\frac{8}{3}$,当且仅当$\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$时等号成立,
故:x2+y2+z2的最小值为$\frac{8}{3}$.
(2)由柯西不等式,
得:[x2+(y-1)2+z2](12+22+12)≥(x+2y-2+z)2.
即:6[x2+(y-1)2+z2]≥4,
∴x2+(y-1)2+z2≥$\frac{2}{3}$,当且仅当$\frac{x}{1}=\frac{y-1}{2}=\frac{z}{1}$时等号成立,
故:x2+(y-1)2+z2的最小值为$\frac{2}{3}$.
点评 本题考查了柯西不等式的运用能力,考查学生的计算能力.属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{3π}{4}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,0) | B. | (3,0) | C. | (-1,3) | D. | (-2,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x>-2011} | B. | {x|x<-2011} | C. | {x|-2011<x<0} | D. | {x|-2016<x<-2011} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com