精英家教网 > 高中数学 > 题目详情
19.直线l与抛物线C:y2=2x交于A,B两点,O为坐标原点,若直线OA,OB的斜率k1,k2满足${k_1}{k_2}=\frac{2}{3}$,则l一定过点(  )
A.(-3,0)B.(3,0)C.(-1,3)D.(-2,0)

分析 直线l:x=my+b,代入抛物线方程可化为y2-2my-2b=0,y1y2=-2b,结合${k_1}{k_2}=\frac{2}{3}$,即可得出结论.

解答 解:设A(x1,y1),B(x2,y2),则$\frac{{y}_{1}}{{x}_{1}}•\frac{{y}_{2}}{{x}_{2}}$=$\frac{2}{3}$,
∴y1y2=6
直线l:x=my+b,代入抛物线方程可化为y2-2my-2b=0,
∴y1y2=-2b,
∴-2b=6,∴b=-3,
∴l一定过点(-3,0),
故选A.

点评 本题考查抛物线方程,考查直线与抛物线的位置关系,比较基础..

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex-a(x+1),
(1)求f(x)的单调区间及a=1时的极值;
(2)解关于x的不等式ex(x-1)>(x-1)($\frac{1}{2}$x2+x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax,g(x)=lnx+3.
(1)当a=1时,请用导数的定义求函数f(x)的导数;
(2)求函数g(x)在点(1,3)处的切线方程;
(3)若函数h(x)=f(x)-g(x)在x∈[e-4,e]上的图象与直线y=t(0≤t≤1)总有两个不同交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设x,y,z∈R,若x+2y+z=4.
(1)求x2+y2+z2的最小值;
(2)求x2+(y-1)2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设抛物线y2=8x的焦点为F,P是抛物线上一点,若直线PF的倾斜角为120°,则|PF|=(  )
A.$\frac{8}{3}$B.3C.$\frac{8}{3}$或8D.3或8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若A,B,C是函数f(x)=ex+x图象上横坐标成等差数列的三个点,给出以下判断:①△ABC可能是直角三角形;②△ABC一定是钝角三角形;③△ABC可能是等腰三角形;④△ABC一定不是等腰三角形.其中,正确的判断是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=ex|x-1|-2ax+3a恰有3个零点,则实数a的取值范围是$(-\frac{{\sqrt{e}}}{4},0)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,a1=1,且2nSn+1-2(n+1)Sn=n(n+1)(n∈N*),数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),b3=5,其前9项和为63.
(Ⅰ)证明:数列$\{\frac{S_n}{n}\}$为等差数列;
(Ⅱ)求anbn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=h.
(1)若h=2,求AC1与平面A1BD所成角的正弦值;
(2)若二面角A1-BD-C的大小为$\frac{3}{4}$π,求h的值.

查看答案和解析>>

同步练习册答案