精英家教网 > 高中数学 > 题目详情
13.在如图所示的多面体ABCDEF中,四边形ABCD为正方形,底面ABFE为直角梯形,∠ABF为直角,$AE∥BF,AB=\frac{1}{2}BF=1$,
平面ABCD⊥平面ABFE.
(1)求证:DB⊥EC;
(2)若AE=AB,求二面角C-EF-B的余弦值.

分析 (1)推导出AE⊥AB,BF⊥AB,从而BF⊥BC,设AE=t,以BA,BF,BC所在的直线分别为x,y,z轴坐标系,利用向量法能证明DB⊥EC.
(2)求出平面BEF的一个法向量和平面CEF的一个法向量,利用向量法能求出二面角C-EF-B的余弦值.

解答 证明:(1)∵底面ABFE为直角梯形,AE∥BF,∠EAB=90°,
∴AE⊥AB,BF⊥AB,
∵平面ABCD⊥平面ABFE,平面ABCD∩平面ABFE=AB,
∴AE⊥平面ABCD.BF⊥平面ABCD,∴BF⊥BC,
设AE=t,以BA,BF,BC所在的直线分别为x,y,z轴建立如图坐标系,
则B(0,0,0),C(0,0,1),D(1,0,1),E(1,t,0)$\overrightarrow{DB}=(-1,0,-1),\overrightarrow{EC}=(-1,-t,1)$
∵$\overrightarrow{DB}•\overrightarrow{EC}$=0,∴DB⊥EC.…(6分)
解:(2)由(1)知$\overrightarrow{BC}=(0,0,1)$是平面BEF的一个法向量,
设$\overrightarrow{n}$=(x,y,z)是平面CEF的一个法向量,
AE=AB=1,E(1,1,0),F(0,2,0),
∴$\overrightarrow{CE}$=(1,1,-1),$\overrightarrow{CF}$=(0,2,-1),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CE}=x+y-z=0}\\{\overrightarrow{n}•\overrightarrow{CF}=2y-z=0}\end{array}\right.$,取z=2,$\overrightarrow{n}$=(1,1,2),
∴cos<$\overrightarrow{n},\overrightarrow{BC}$>=$\frac{\overrightarrow{n}•\overrightarrow{BC}}{|\overrightarrow{n}|•|\overrightarrow{BC}|}$=$\frac{\sqrt{6}}{3}$,
即二面角C-EF-B的余弦值为$\frac{\sqrt{6}}{3}$.

点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.直线l过抛物线y2=2px(p>0)的焦点且与该抛物线的轴垂直,若直线l与该抛物线围成的封闭图形的面积为$\frac{3}{2}$,则p等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合M={-4,-3,-2,-1,0,1},N={x∈R|x2+3x<0},则M∩N=(  )
A.{-3,-2,-1,0}B.{-2,-1,0}C.{-3,-2,-1}D.{-2,-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数$f(x)=\frac{1}{x+2}$,点O为坐标原点,点${A_n}(n,f(n))(n∈{N^*})$,向量$\overrightarrow{i}$=(0,1),θn是向量$\overrightarrow{O{A}_{n}}$与$\overrightarrow{i}$的夹角,则使得$\frac{{cos{θ_1}}}{{sin{θ_1}}}+\frac{{cos{θ_2}}}{{sin{θ_2}}}+\frac{{cos{θ_3}}}{{sin{θ_3}}}+…+\frac{{cos{θ_n}}}{{sin{θ_n}}}<t$恒成立的实  数t的取值范围为t≥$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如表.
  非一线 一线 总计
 愿生 45 20 65
 不愿生 13 22 35
 总计 58 42 100
附表:
 P(K2≥k) 0.050 0.010 0.001
 k 3.841 6.635 10.828
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$算得,K2=$\frac{100×(45×22-20×13)^{2}}{58×42×35×65}$≈9.616参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”
C.有99%以上的把握认为“生育意愿与城市级别有关”
D.有99%以上的把握认为“生育意愿与城市级别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知圆C的圆心在坐标轴上,且经过点(6,0)及椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$的两个顶点,则该圆的标准方程为(  )
A.(x-2)2+y2=16B.x2+(y-6)2=72C.${(x-\frac{8}{3})^2}+{y^2}=\frac{100}{9}$D.${(x+\frac{8}{3})^2}+{y^2}=\frac{100}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.从1、2、3、4、5、6中任三个数,则所取的三个数按一定的顺序可排成等差数列的概率为(  )
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{7}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设F为抛物线x2=4y的焦点,A、B、C为该抛物线上三点,若$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,则|FA|+|FB|+|FC|的值为(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax+lnx.
(Ⅰ)若f(x)在区间(0,1)上单调递增,求实数a的取值范围;
(Ⅱ)设函数h(x)=-$\frac{1}{2}$x2-f(x)有两个极值点x1、x2,且x1∈[$\frac{1}{2}$,1),求证:|h(x1)-h(x2)|<2-ln2.

查看答案和解析>>

同步练习册答案