精英家教网 > 高中数学 > 题目详情
5.从1、2、3、4、5、6中任三个数,则所取的三个数按一定的顺序可排成等差数列的概率为(  )
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{7}{20}$

分析 先求出基本事件总数n=${C}_{6}^{3}$=20,再利用列举法求出所取的三个数按一定的顺序可排成等差数列包含的基本事件个数,由此能求出所取的三个数按一定的顺序可排成等差数列的概率.

解答 解:从1、2、3、4、5、6中任取三个数,
基本事件总数n=${C}_{6}^{3}$=20,
所取的三个数按一定的顺序可排成等差数列包含的基本事件有:
(1,2,3),(2,3,4),(3,4,5),(4,5,6),(1,3,5),(2,4,6),
共有6个,
则所取的三个数按一定的顺序可排成等差数列的概率为p=$\frac{6}{20}=\frac{3}{10}$.
故选:A.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.我国南北朝时代的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容 异”.“势’’即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个上底为l的梯形,且当实数t取[0,3]上的任意值时,直线y=t被图l和图2所截得的两线段长始终相等,则图l的面积为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在矩形ABCD中,将△ABC沿其对角线AC折起来得到△AB1C,且顶点B1在平面ACD上的射影O恰好落在边AD上(如图所示).
(Ⅰ)证明:AB1⊥平面B1CD;
(Ⅱ)若AB=1,BC=$\sqrt{3}$,求三棱锥B1-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在如图所示的多面体ABCDEF中,四边形ABCD为正方形,底面ABFE为直角梯形,∠ABF为直角,$AE∥BF,AB=\frac{1}{2}BF=1$,
平面ABCD⊥平面ABFE.
(1)求证:DB⊥EC;
(2)若AE=AB,求二面角C-EF-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在数列{an}中,a1=2,an+1=3an,(n∈N*),则a4=54.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某种产品按质量标准分成五个等级,等级编号依次为1,2,3,4,5.现从一批产品中随机抽取20件,对其等级编号进行统计分析,得到频率分布表如下:
等级12345
频率a0.20.45bc
(1)若所抽取的20件产品中,等级编号为4的恰有3件,等级编号为5的恰有2件,求a,b,c的值;
(2)在(1)的条件下,将等级编号为4的3件产品记为x1,x2,x3,等级编号为5的2件产品记为y1,y2,现从x1,x2,x3,y1,y2这5件产品中任取两件(假定每件产品被取出的可能性相同),写出所有可能的结果,并求这两件产品的等级编号恰好相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知ξ~N(μ,δ2),若P(ξ>4)=P(ξ<2)成立,且P(ξ≤0)=0.2,则P(0<ξ<6)=0.6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|、|$\overrightarrow{b}$|、|$\overrightarrow{a}$-$\overrightarrow{b}$|∈[2,6],则$\overrightarrow{a}$•$\overrightarrow{b}$的取值范围为[-14,34].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线C:y2=2px(p>0)的焦点F与椭圆Γ:$\frac{x^2}{2}+{y^2}$=1的一个焦点重合,点M(x0,2)在抛物线上,过焦点F的直线l交抛物线于A,B两点.
(Ⅰ)求抛物线C的方程以及|MF|的值;
(Ⅱ)记抛物线C的准线与x轴交于点H,试问是否存在常数λ∈R,使得$\overrightarrow{AF}=λ\overrightarrow{FB}$且|HA|2+|HB|2=$\frac{85}{4}$都成立?若存在,求出实数λ的值; 若不存在,请说明理由.

查看答案和解析>>

同步练习册答案