分析 直线l过抛物线y2=2px(p>0)的焦点且与该抛物线的轴垂直,则抛物线与直线的交点为($\frac{p}{2}$,±p)
y2=2px(p>0)⇒x=$\frac{{y}^{2}}{2p}$,根据定积分的几何意义得2${∫}_{0}^{p}($$\frac{{y}^{2}}{2p}$)=p2-$\frac{3}{2}$,即可求p
解答 解:直线l过抛物线y2=2px(p>0)的焦点且与该抛物线的轴垂直,
则抛物线与直线的交点为($\frac{p}{2}$,±p)
y2=2px(p>0)⇒x=$\frac{{y}^{2}}{2p}$,根据定积分的几何意义得2${∫}_{0}^{p}($$\frac{{y}^{2}}{2p}$)dy=p2-$\frac{3}{2}$,
∵$(\frac{{y}^{3}}{6p})′=\frac{{y}^{2}}{2p}$,∴2×$\frac{{p}^{2}}{6}$=${p}^{2}-\frac{3}{2}$,∴$p=\frac{3}{2}$.
故答案为:$\frac{3}{2}$
点评 本题考查了微积分的几何性质,及定积分定理的应用,属于中档题,
科目:高中数学 来源: 题型:解答题
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com