精英家教网 > 高中数学 > 题目详情
14.已知圆C:(x-6)2+y2=20,直线l:y=kx与圆C交于不同的两点A、B.
(Ⅰ)求实数k的取值范围;
(Ⅱ)若$\overrightarrow{OB}$=2$\overrightarrow{OA}$,求直线l的方程.

分析 (Ⅰ)根据题意可得圆心C(6,0)到直线l:y=kx的距离小于半径$\sqrt{20}$,由此求得k的范围.
(Ⅱ)把直线l:y=kx代入圆C,化简后利用韦达定理,再根据$\overrightarrow{OB}$=2$\overrightarrow{OA}$,可得x2=2x1,从而求得k的值,可得直线l的方程.

解答 解:(Ⅰ)由题意可得,圆心C(6,0)到直线l:y=kx的距离小于半径$\sqrt{20}$,
即 $\frac{|6k-0|}{\sqrt{{k}^{2}+1}}$<$\sqrt{20}$,求得-$\frac{\sqrt{5}}{2}$<k<$\frac{\sqrt{5}}{2}$.
(Ⅱ)把直线l:y=kx代入圆C:(x-6)2+y2=20,化简可得(1+k2)x2-12x+16=0,
∴x1+x2=$\frac{12}{1{+k}^{2}}$,x1•x2=$\frac{16}{1{+k}^{2}}$.
若$\overrightarrow{OB}$=2$\overrightarrow{OA}$,则x2=2x1,则x1=$\frac{4}{1{+k}^{2}}$,x2=$\frac{8}{1{+k}^{2}}$,∴则x1•x2=$\frac{4}{1{+k}^{2}}$•$\frac{8}{1{+k}^{2}}$=$\frac{16}{{1+k}^{2}}$,∴k=±1,
故直线l:y=±x.

点评 本题主要考查直线和圆的位置关系,点到直线的距离公式,韦达定理的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=log4(ax2+2x+3),a∈R
(1)若f(x)的值域为[$\frac{1}{2}$,+∞),求a;
(2)若f(x)在区间(-$\frac{1}{2}$,+∞)上是增加的,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=lnx+(e-a)x-b,其中e为自然对数的底数.若不等式f(x)≤0恒成立,则$\frac{b}{a}$的最小值为-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.①命题“?x≥1,x2+3≥4”的否定是“?x<1,x2+3<4”
②A、B、C三种不同型号的产品的数量之比依次为2:3:4,用分层抽样抽出方法抽出一个容量为n的样本,样本中A种型号产品有16件,那么样本的容量n=72
③命题“若x,y都是偶数,则x+y是偶数”的否命题是“若x,y都不是偶数,则x+y不是偶数”
④若非空集合M?N,则“a∈M或a∈N”是“a∈M∩N”的必要不充分条件
以上四个命题正确的是②④(把你认为正确的命题序号都填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若实数x、y满足$\left\{\begin{array}{l}{y≤x}\\{y≥\frac{1}{2}x}\\{x+y≤1}\end{array}\right.$,则z=2x-y的最大值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}的前n项和为Sn,且对任意的n∈N*,都有an>0,Sn=$\sqrt{{a_1}^3+{a_2}^3+…+{a_n}^3}$
(I)求a1,a2的值;
(II)求数列{an}的通项公式an
(III)证明:ln2≤an•ln(1+$\frac{1}{{a}_{n}}$)<ln3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,且F2为抛物线y2=24x的焦点,设点P为两曲线的一个公共点,若△PF1F2的面积为36$\sqrt{6}$,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1B.$\frac{{x}^{2}}{27}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线l过抛物线y2=2px(p>0)的焦点且与该抛物线的轴垂直,若直线l与该抛物线围成的封闭图形的面积为$\frac{3}{2}$,则p等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合M={-4,-3,-2,-1,0,1},N={x∈R|x2+3x<0},则M∩N=(  )
A.{-3,-2,-1,0}B.{-2,-1,0}C.{-3,-2,-1}D.{-2,-1}

查看答案和解析>>

同步练习册答案