| A. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1 | B. | $\frac{{x}^{2}}{27}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | D. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 |
分析 利用△PF1F2的面积为36$\sqrt{6}$,求出P的坐标,利用双曲线的定义,求出a,即可求出双曲线的方程.
解答 解:由题意,F2(6,0),
设P(m,n),则
∵△PF1F2的面积为36$\sqrt{6}$,
∴$\frac{1}{2}×12×|n|$=36$\sqrt{6}$,∴|n|=6$\sqrt{6}$,
∴m=9,
取P(9,6$\sqrt{6}$),则2a=$\sqrt{(9+6)^{2}+(6\sqrt{6})^{2}}$-$\sqrt{(9-6)^{2}+(6\sqrt{6})^{2}}$=6,
∴a=3,b=3$\sqrt{3}$,
∴双曲线的方程为$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1,
故选A.
点评 本题考查双曲线的方程与性质,考查三角形面积的计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{8}-\frac{y^2}{24}=1$ | B. | $\frac{x^2}{24}-\frac{y^2}{8}=1$ | C. | $\frac{x^2}{4}-\frac{y^2}{12}=1$ | D. | $\frac{x^2}{12}-\frac{y^2}{4}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{-\frac{{\sqrt{6}}}{6},\frac{{\sqrt{6}}}{6}}]$ | B. | $[{-\frac{1}{6},\frac{1}{6}}]$ | C. | $[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$ | D. | $[{-\frac{1}{3},\frac{1}{3}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com