分析 (Ⅰ)取AC中点O,连接PO,BO,由等腰三角形的性质可得PO⊥AC,BO⊥AC,再由线面垂直的判定可得AC⊥平面POB,则AC⊥PB;
(Ⅱ)由平面PAC⊥平面ABC,且平面PAC∩平面ABC=AC,可得PO⊥平面ABC,以O为原点,分别以OA、OB、OP所在直线为x、y、z轴建立空间直角坐标系,然后分别求出平面PBC与平面PAC的一个法向量,利用两法向量所成角的余弦值求得二面角A-PC-B的余弦值.
解答 (Ⅰ)证明:如图,![]()
取AC中点O,连接PO,BO,
∵PA=PC,∴PO⊥AC,
又∵底面ABC为正三角形,∴BO⊥AC,
∵PO∩OB=O,∴AC⊥平面POB,则AC⊥PB;
(Ⅱ)解:∵平面PAC⊥平面ABC,且平面PAC∩平面ABC=AC,
PO⊥AC,∴PO⊥平面ABC,
以O为原点,分别以OA、OB、OP所在直线为x、y、z轴建立空间直角坐标系,
∵AC=PC=2,∴P(0,0,$\sqrt{3}$),B(0,$\sqrt{3}$,0),C(-1,0,0),$\overrightarrow{PB}=(0,\sqrt{3},-\sqrt{3})$,
$\overrightarrow{BC}=(-1,-\sqrt{3},0)$,
设平面PBC的一个法向量为$\overrightarrow{n}=(x,y,z)$,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=\sqrt{3}y-\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{BC}=-x-\sqrt{3}y=0}\end{array}\right.$,取y=-1,得$\overrightarrow{n}=(\sqrt{3},-1,-1)$,
又$\overrightarrow{OB}=(0,\sqrt{3},0)$是平面PAC的一个法向量,
∴cos<$\overrightarrow{n},\overrightarrow{OB}$>=$\frac{-\sqrt{3}}{\sqrt{5}×\sqrt{3}}=-\frac{\sqrt{5}}{5}$.
∴二面角A-PC-B的余弦值为$\frac{\sqrt{5}}{5}$.
点评 本题考查线面垂直的判定和性质,考查了空间想象能力和思维能力,训练了利用空间向量求解二面角的平面角,是中档题.
科目:高中数学 来源: 题型:解答题
| 原料 肥料 | A | B |
| 甲 | 3 | 1 |
| 乙 | 2 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1 | B. | $\frac{{x}^{2}}{27}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | D. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com