精英家教网 > 高中数学 > 题目详情
11.如图,三棱锥P-ABC中,PA=PC,底面ABC为正三角形.
(Ⅰ)证明:AC⊥PB;
(Ⅱ)若平面PAC⊥平面ABC,AC=PC=2,求二面角A-PC-B的余弦值.

分析 (Ⅰ)取AC中点O,连接PO,BO,由等腰三角形的性质可得PO⊥AC,BO⊥AC,再由线面垂直的判定可得AC⊥平面POB,则AC⊥PB;
(Ⅱ)由平面PAC⊥平面ABC,且平面PAC∩平面ABC=AC,可得PO⊥平面ABC,以O为原点,分别以OA、OB、OP所在直线为x、y、z轴建立空间直角坐标系,然后分别求出平面PBC与平面PAC的一个法向量,利用两法向量所成角的余弦值求得二面角A-PC-B的余弦值.

解答 (Ⅰ)证明:如图,
取AC中点O,连接PO,BO,
∵PA=PC,∴PO⊥AC,
又∵底面ABC为正三角形,∴BO⊥AC,
∵PO∩OB=O,∴AC⊥平面POB,则AC⊥PB;
(Ⅱ)解:∵平面PAC⊥平面ABC,且平面PAC∩平面ABC=AC,
PO⊥AC,∴PO⊥平面ABC,
以O为原点,分别以OA、OB、OP所在直线为x、y、z轴建立空间直角坐标系,
∵AC=PC=2,∴P(0,0,$\sqrt{3}$),B(0,$\sqrt{3}$,0),C(-1,0,0),$\overrightarrow{PB}=(0,\sqrt{3},-\sqrt{3})$,
$\overrightarrow{BC}=(-1,-\sqrt{3},0)$,
设平面PBC的一个法向量为$\overrightarrow{n}=(x,y,z)$,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=\sqrt{3}y-\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{BC}=-x-\sqrt{3}y=0}\end{array}\right.$,取y=-1,得$\overrightarrow{n}=(\sqrt{3},-1,-1)$,
又$\overrightarrow{OB}=(0,\sqrt{3},0)$是平面PAC的一个法向量,
∴cos<$\overrightarrow{n},\overrightarrow{OB}$>=$\frac{-\sqrt{3}}{\sqrt{5}×\sqrt{3}}=-\frac{\sqrt{5}}{5}$.
∴二面角A-PC-B的余弦值为$\frac{\sqrt{5}}{5}$.

点评 本题考查线面垂直的判定和性质,考查了空间想象能力和思维能力,训练了利用空间向量求解二面角的平面角,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.某化肥厂生产甲、乙两种混合肥料,需要A、B两种主要原料,生产1吨甲种肥料和生产1吨乙种肥料所需两种原料的吨数如下表所示:
原料
肥料
AB
31
22
每日可用A种原料12吨,B种原料8吨,已知生产1吨甲种肥料可获利润3万元;生产1吨乙种肥料可获利润4万元,分别用x,y表示计划生产甲、乙两种肥料的吨数.
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问每日分别生产甲、乙两种肥料各多少吨,能够产生最大利润?并求出此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.①命题“?x≥1,x2+3≥4”的否定是“?x<1,x2+3<4”
②A、B、C三种不同型号的产品的数量之比依次为2:3:4,用分层抽样抽出方法抽出一个容量为n的样本,样本中A种型号产品有16件,那么样本的容量n=72
③命题“若x,y都是偶数,则x+y是偶数”的否命题是“若x,y都不是偶数,则x+y不是偶数”
④若非空集合M?N,则“a∈M或a∈N”是“a∈M∩N”的必要不充分条件
以上四个命题正确的是②④(把你认为正确的命题序号都填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}的前n项和为Sn,且对任意的n∈N*,都有an>0,Sn=$\sqrt{{a_1}^3+{a_2}^3+…+{a_n}^3}$
(I)求a1,a2的值;
(II)求数列{an}的通项公式an
(III)证明:ln2≤an•ln(1+$\frac{1}{{a}_{n}}$)<ln3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,且F2为抛物线y2=24x的焦点,设点P为两曲线的一个公共点,若△PF1F2的面积为36$\sqrt{6}$,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1B.$\frac{{x}^{2}}{27}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}中,a1=a2=1,且an+2-an=1,则数列{an}的前100项和为2550.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线l过抛物线y2=2px(p>0)的焦点且与该抛物线的轴垂直,若直线l与该抛物线围成的封闭图形的面积为$\frac{3}{2}$,则p等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx,g(x)=ex
(1)若函数y=ax+f(x)在区间(0,e]上的最大值为-4,求实数a的值;
(2)若函数y=ag(2x)+bg(x)-x有两个不同的零点x1,x2,x0是x1,x2的等差中项,证明:当a>0时,不等式2ag (2x0)+bg(x0)<f(e)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数$f(x)=\frac{1}{x+2}$,点O为坐标原点,点${A_n}(n,f(n))(n∈{N^*})$,向量$\overrightarrow{i}$=(0,1),θn是向量$\overrightarrow{O{A}_{n}}$与$\overrightarrow{i}$的夹角,则使得$\frac{{cos{θ_1}}}{{sin{θ_1}}}+\frac{{cos{θ_2}}}{{sin{θ_2}}}+\frac{{cos{θ_3}}}{{sin{θ_3}}}+…+\frac{{cos{θ_n}}}{{sin{θ_n}}}<t$恒成立的实  数t的取值范围为t≥$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案