精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=lnx+$\sqrt{x}+a(x-1)+b(a,b∈R,a,b$为常数)的图象经过点(1,0),且在点(1,0)处的切线与直线y=-$\frac{2}{3}$x垂直.
(Ⅰ)求a、b的值;
(Ⅱ)当1<x<3时,有f(x)<$\frac{(9+m)x+5m-9}{x+5}$成立,求实数m的取值范围.

分析 (Ⅰ)将(1,0)代入f(x),求导则在(1,0)处切线斜率k=f′(1),由(1+$\frac{1}{2}$+a)×(-$\frac{2}{3}$)=-1,即可求得a和b的值;
(Ⅱ)由1<x<3时,$f(x)<\frac{(9+m)x+5m-9}{x+5}$等价为$f(x)<\frac{9(x-1)}{x+5}+m$,构造辅助函数,求导,利用导数与函数单调性的关系,求得函数的最值,即可求得实数m的取值范围.

解答 解:(Ⅰ)将(1,0)代f(x),可知:$0=ln1+\sqrt{1}+a(1-1)+b$①
∵求导$f'(x)=\frac{1}{x}+\frac{1}{{2\sqrt{x}}}+a$,则在(1,0)处切线斜率k=f′(1)=1+$\frac{1}{2}$+a,
则(1+$\frac{1}{2}$+a)×(-$\frac{2}{3}$)=-1,②
由①、②解得:a=0,b=-1,
a、b的值0,-1;…(6分)
(Ⅱ)由(Ⅰ)知$f(x)=lnx+\sqrt{x}-1$,
∵$\frac{(9+m)x+5m-9}{x+5}=\frac{9(x-1)+m(x+5)}{x+5}=\frac{9(x-1)}{x+5}+m$,
∴1<x<3时,$f(x)<\frac{(9+m)x+5m-9}{x+5}$等价为$f(x)<\frac{9(x-1)}{x+5}+m$,…(8分)
令$h(x)=f(x)-\frac{9(x-1)}{x+5}$,则h(x)<m,
当1<x<3时,$h'(x)=\frac{1}{x}+\frac{1}{{2\sqrt{x}}}-\frac{54}{{{{(x+5)}^2}}}=\frac{{2+\sqrt{x}}}{2x}-\frac{54}{{{{(x+5)}^2}}}$,
∵x>1时$2\sqrt{x}=2\sqrt{x•1}<x+1$,
∴$h'(x)=\frac{{2+\sqrt{x}}}{2x}-\frac{54}{{{{(x+5)}^2}}}<\frac{x+5}{4x}-\frac{54}{{{{(x+5)}^2}}}=\frac{{{{(x+5)}^3}-216x}}{{4x{{(x+5)}^2}}}$,
令p(x)=(x+5)3-216x,则p'(x)=(x+5)3-216x=3(x+5)2-216
∵1<x<3,
∴p'(x)=3(x+5)2-216<3(3+5)2-216<0,
∴p(x)=(x+5)3-216x在(1,3)内为减函数,
∵p(1)=(1+5)3-216=0,
∴当1<x<3时$h'(x)=\frac{{2+\sqrt{x}}}{2x}-\frac{54}{{{{(x+5)}^2}}}<\frac{x+5}{4x}-\frac{54}{{{{(x+5)}^2}}}=\frac{{{{(x+5)}^3}-216x}}{{4x{{(x+5)}^2}}}<0$,
∴$h(x)=f(x)-\frac{9(x-1)}{x+5}$在(1,3)内为减函数,
∵h(1)=0,
∴当1<x<3时,$h(x)=f(x)-\frac{9(x-1)}{x+5}<0$
∴实数m的取值范围是(0,+∞).…(12分)

点评 本题考查导数的综合应用,考查利用导数求函数的单调性及最值,利用导数求函数的切线方程,考查导数与不等式的综合应用,考查转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(a+$\frac{1}{a}$)lnx-x+$\frac{1}{x}$,其中a>0.
(Ⅰ)若f(x)在(0,+∞)上存在极值点,求a的取值范围;
(Ⅱ)设a∈(1,e],当x1∈(0,1),x2∈(1,+∞)时,记f(x2)-f(x1)的最大值为M(a),那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若实数x、y满足$\left\{\begin{array}{l}{y≤x}\\{y≥\frac{1}{2}x}\\{x+y≤1}\end{array}\right.$,则z=2x-y的最大值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,且F2为抛物线y2=24x的焦点,设点P为两曲线的一个公共点,若△PF1F2的面积为36$\sqrt{6}$,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1B.$\frac{{x}^{2}}{27}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若过点P(1-a,1+a)和Q(3,2a)的直线的倾斜角为钝角,则实数a的取值范围是(  )
A.(-2,1)B.(-1,2)C.(-∞,0)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线l过抛物线y2=2px(p>0)的焦点且与该抛物线的轴垂直,若直线l与该抛物线围成的封闭图形的面积为$\frac{3}{2}$,则p等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.三棱锥P-ABC的四个顶点都在半径为4的球面上,且三条侧棱两两互相垂直,则该三棱锥侧面积的最大值为32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$=(-2,4),$\overrightarrow{b}$=(-1,m).若$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数m的值为(  )
A.-$\frac{1}{2}$B.-2C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如表.
  非一线 一线 总计
 愿生 45 20 65
 不愿生 13 22 35
 总计 58 42 100
附表:
 P(K2≥k) 0.050 0.010 0.001
 k 3.841 6.635 10.828
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$算得,K2=$\frac{100×(45×22-20×13)^{2}}{58×42×35×65}$≈9.616参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”
C.有99%以上的把握认为“生育意愿与城市级别有关”
D.有99%以上的把握认为“生育意愿与城市级别无关”

查看答案和解析>>

同步练习册答案