精英家教网 > 高中数学 > 题目详情
10.三棱锥P-ABC的四个顶点都在半径为4的球面上,且三条侧棱两两互相垂直,则该三棱锥侧面积的最大值为32.

分析 由已知,三棱锥P-ABC的四个顶点均在半径为3的球面上,且PA,PB,PC两两垂直,球直径等于以PA,PB,PC为棱的长方体的对角线,由基本不等式易得到三棱锥P-ABC的侧面积的最大值.

解答 解:∵PA,PB,PC两两垂直,
又∵三棱锥P-ABC的四个顶点均在半径为3的球面上,
∴以PA,PB,PC为棱的长方体的对角线即为球的一条直径.
∴64=PA2+PB2+PC2
则由基本不等式可得PA2+PB2≥2PA•PB,PA2+PC2≥2PA•PC,PB2+PC2≥2PB•PC,
即64=PA2+PB2+PC2≥PA•PB+PB•PC+PA•PC
则三棱锥P-ABC的侧面积S=$\frac{1}{2}$(PA•PB+PB•PC+PA•PC)≤32,
则三棱锥P-ABC的侧面积的最大值为32,
故答案为:32.

点评 本题考查的知识点是棱锥的侧面积,基本不等式,棱柱的外接球,其中根据已知条件,得到棱锥的外接球直径等于以PA,PB,PC为棱的长方体的对角线,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数y=xcosx-sinx的部分图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数z=$\frac{1+i}{i}$,则|z|=(  )
A.$\sqrt{2}$B.2C.-$\sqrt{2}$D.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx+$\sqrt{x}+a(x-1)+b(a,b∈R,a,b$为常数)的图象经过点(1,0),且在点(1,0)处的切线与直线y=-$\frac{2}{3}$x垂直.
(Ⅰ)求a、b的值;
(Ⅱ)当1<x<3时,有f(x)<$\frac{(9+m)x+5m-9}{x+5}$成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四边形ABCD是梯形,AB∥CD,AB⊥AD,SA⊥平面ABCD,E、F分别是SC、SD的中点,SA=AD=2CD=4AB=4.
(1)求证:EF∥平面SAB;
(2)求证:BE⊥平面SCD;
(3)求二面角B-SD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.我国南北朝时代的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容 异”.“势’’即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个上底为l的梯形,且当实数t取[0,3]上的任意值时,直线y=t被图l和图2所截得的两线段长始终相等,则图l的面积为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集A={x|x≤9,x∈N*}集合B={x|0<x<7},则A∩B=(  )
A.{x|0<x<7}B.{x|1≤x≤6}C.{1,2,3,4,5,6}D.{7,8,9}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax-$\frac{a}{x}$-lnx(a≠0).
(1)若x=2是函数f(x)的极值点,求a的值;
(2)讨论函数f(x)的单调区间;
(3)对任意的正整数n,证明:$\frac{3}{1×2}$+$\frac{5}{2×3}$+$\frac{7}{3×5}$+…+$\frac{2n+1}{n(n+1)}$>ln(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在数列{an}中,a1=2,an+1=3an,(n∈N*),则a4=54.

查看答案和解析>>

同步练习册答案