精英家教网 > 高中数学 > 题目详情
16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线的方程是$y=\sqrt{3}x$,它的一个焦点落在抛物线y2=16x的准线上,则双曲线的方程为(  )
A.$\frac{x^2}{8}-\frac{y^2}{24}=1$B.$\frac{x^2}{24}-\frac{y^2}{8}=1$C.$\frac{x^2}{4}-\frac{y^2}{12}=1$D.$\frac{x^2}{12}-\frac{y^2}{4}=1$

分析 利用抛物线的准线方程,推出双曲线的焦点坐标,利用双曲线的渐近线方程,求解即可.

解答 解:双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线的方程是$y=\sqrt{3}x$,可得b=$\sqrt{3}$a,
它的一个焦点落在抛物线y2=16x的准线上,可得c=4,即16=a2+b2
a=2,b=2$\sqrt{3}$.
所求的双曲线方程为:$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}=1$.
故选:C.

点评 本题考查抛物线以及双曲线的简单性质的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设F(c,0)是双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点,$P(\frac{a^2}{c},\frac{{\sqrt{2}a}}{2})$为直线上一点,且直线垂直于x轴,垂足为M,若△PMF等腰三角形,则E的离心率为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$E:\frac{x^2}{5}+\frac{y^2}{4}=1$的右焦点为F,设直线l:x=5与x轴的交点为E,过点F且斜率为k的直线l1与椭圆交于A,B两点,M为线段EF的中点.
(I)若直线l1的倾斜角为$\frac{π}{4}$,|AB|的值;
(Ⅱ)设直线AM交直线l于点N,证明:直线BN⊥l.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=log4(ax2+2x+3),a∈R
(1)若f(x)的值域为[$\frac{1}{2}$,+∞),求a;
(2)若f(x)在区间(-$\frac{1}{2}$,+∞)上是增加的,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=xlnx的图象上有A、B两点,其横坐标为x1,x2(0<x1<x2<1)且满足f(x1)=f(x2),若k=5($\frac{{x}_{1}+{x}_{2}}{2}$+$\sqrt{{x}_{1}{x}_{2}}$),且k为整数时,则k的值为(  )(参考数据:e≈2.72)
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某化肥厂生产甲、乙两种混合肥料,需要A、B两种主要原料,生产1吨甲种肥料和生产1吨乙种肥料所需两种原料的吨数如下表所示:
原料
肥料
AB
31
22
每日可用A种原料12吨,B种原料8吨,已知生产1吨甲种肥料可获利润3万元;生产1吨乙种肥料可获利润4万元,分别用x,y表示计划生产甲、乙两种肥料的吨数.
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问每日分别生产甲、乙两种肥料各多少吨,能够产生最大利润?并求出此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(a+$\frac{1}{a}$)lnx-x+$\frac{1}{x}$,其中a>0.
(Ⅰ)若f(x)在(0,+∞)上存在极值点,求a的取值范围;
(Ⅱ)设a∈(1,e],当x1∈(0,1),x2∈(1,+∞)时,记f(x2)-f(x1)的最大值为M(a),那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=lnx+(e-a)x-b,其中e为自然对数的底数.若不等式f(x)≤0恒成立,则$\frac{b}{a}$的最小值为-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,且F2为抛物线y2=24x的焦点,设点P为两曲线的一个公共点,若△PF1F2的面积为36$\sqrt{6}$,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1B.$\frac{{x}^{2}}{27}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

同步练习册答案