精英家教网 > 高中数学 > 题目详情
1.把函数y=sin(x-$\frac{π}{3}$)的图象向左平移$\frac{π}{6}$个单位长度,再将图象上所有点的横坐标缩短为原来的$\frac{1}{2}$倍(纵坐标不变)得到函数f(x)的图象.
(Ⅰ)写出函数f(x)的解析式;
(Ⅱ)若x∈[0,$\frac{5π}{6}$]时,关于x的方程f(x)-m=0有两个不等的实数根,求实数m的取值范围.

分析 (Ⅰ)根据图象左右平移和横向伸缩变换的原则可得到解析式;
(Ⅱ)方程f(x)-m=0有两个不等实数根等价于直线y=m与y=sinθ(-$\frac{π}{6}<θ<\frac{3π}{2}$)有两个交点,结合函数图象可知m范围.

解答 解:(Ⅰ)函数y=sin(x-$\frac{π}{3}$)的图象向左平移$\frac{π}{6}$个单位长度,得到y=sin(x-$\frac{π}{6}$),再将图象上所有点的横坐标缩短为原来的$\frac{1}{2}$倍(纵坐标不变)得到函数f(x)的图象,∴$f(x)=sin(2x-\frac{π}{6})$ …(5分)
(Ⅱ)由f(x)-m=0得sin(2x-$\frac{π}{6}$)=m
令2x-$\frac{π}{6}=θ$,由x$∈[0,\frac{5π}{6}]$得$θ∈[-\frac{π}{6},\frac{3π}{2}]$…(7分)
方程f(x)-m=0有两个不等实数根等价于直线y=m与y=sinθ(-$\frac{π}{6}<θ<\frac{3π}{2}$)有两个交点,结合函数图象可知-$\frac{1}{2}≤m<1$…(10分)

点评 本题考查三角函数的图象与性质的运用,属于中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.如图,函数y=f(x)的图象在点P处的切线方程是y=-x+5,则f(3)+f'(3)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列有关命题的说法中,正确的是(  )
A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”
B.命题“若α>β,则sinα>sinβ”的逆否命题为真命题
C.命题“?x∈R,使得x2+x+1<0”的否定是“?x∈R,都有x2+x+1>0”
D.“x>1”是“x2+x-2>0”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.命题“存在x∈R,使得x2-x+2<0”的否定是任意x∈R,都有x2-x+2≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若菱形ABCD的边长为2,则|$\overrightarrow{AB}$-$\overrightarrow{AD}$+$\overrightarrow{CD}$|=(  )
A.2$\sqrt{3}$B.4C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设p:实数t满足t2-5at+4a2<0(其中a≠0),q:方程$\frac{{x}^{2}}{t-2}$+$\frac{{y}^{2}}{t-6}$=1表示双曲线.
(Ⅰ)若a=1,且p∧q为真命题,求实数t的取值范围;
(Ⅱ)若q是p的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.命题“?x0>0,x02-4x0+1<0”的否定是?x>0,x2-4x+1≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求数列$\frac{2}{1×2}$,$\frac{2}{2×3}$,$\frac{2}{3×4}$,$\frac{2}{4×5}$,…的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知圆C的方程为(x-3)2+(y-4)2=22,平面上有A(1,0),B(-1,0)两点,点Q在圆C上,则△ABQ的面积的最大值是(  )
A.6B.3C.2D.1

查看答案和解析>>

同步练习册答案