精英家教网 > 高中数学 > 题目详情
19.已知直线x+y=a与圆O:x2+y2=8交于A,B两点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,则实数a的值为(  )
A.2B.2$\sqrt{2}$C.2$\sqrt{2}$或-2$\sqrt{2}$D.4或-4

分析 根据条件可以得到OA⊥OB,从而△OAB为等腰直角三角形,∠AOB=90°,并且$OA=OB=2\sqrt{2}$,从而便可求出圆心O到直线x+y=a的距离为2,即得到$\frac{|a|}{\sqrt{2}}=2$,从而可得出实数a的值.

解答 解:由$\overrightarrow{OA}•\overrightarrow{OB}=0$得,$\overrightarrow{OA}⊥\overrightarrow{OB}$;
∴△OAB为等腰直角三角形;
∴圆心到直线的距离等于d=2;
∴由点到直线距离公式得,$\frac{|a|}{\sqrt{2}}=2$,$a=±2\sqrt{2}$.
故选C.

点评 考查向量垂直的充要条件,圆的标准方程,直角三角形斜边的中线等于斜边的一半,以及点到直线的距离公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.(x3+$\frac{1}{2\sqrt{x}}$)5的展开式中x8的二项式系数是10(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xoy中,已知椭圆C1:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的焦距为2$\sqrt{2}$,且点$P(0\;,\;\sqrt{3})$在C1上.
(Ⅰ)求C1的方程;
(Ⅱ)设直线l与椭圆C1切于A点,与抛物线C2:x2=2y切于B点,求直线l的方程和线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2,g(x)=$\frac{2}{x}$.
(1)若F(x)=f(x)+g(x),解不等式F(x)-F(x-1)>2x-1;
(2)当x∈[-1,+∞)时,f(x)+g(x)(-ax2+x)≥a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在正三棱锥S-ABC中,SA⊥SB,AB=$\sqrt{2}$,则正三棱谁S-ABC外接球的体积为(  )
A.B.2$\sqrt{3}$πC.$\sqrt{3}$πD.$\frac{\sqrt{3}}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某省去年高三200000名考生英语听力考试服从正态分布N(17,9),现从某校高三年级随机抽取50名考生的成绩,发现全部介于[6,30]之间,将成绩按如图方式分成6组:第1组[6,10),第2组[10,14),…,第6组[26,30),如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)估算该校50名考生的众数和中位数;
(Ⅱ)求这50名考生成绩在[22,30]内的人数;
(Ⅲ)从这50名考生成绩在[22,30]内的人中任意抽取2人,该2人成绩排名(从高到低)在全省前260名的人数记为X,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={-1,0,1},集合B={x|1≤2x≤4},则A∩B=(  )
A.{-1,0,1}B.{1}C.{-1,1}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.向量$\overrightarrow a=(3,-4),|\overrightarrow b|=2$,若$\overrightarrow a•\overrightarrow b=-5$,则向量$\overrightarrow a,\overrightarrow b$的夹角为(  )
A.60°B.30°C.135°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四边形ABCD中,∠ABC=$\frac{π}{3}$,AB:BC=2:3,$AC=\sqrt{7}$.
(1)求sin∠ACB的值;
(2)若$∠BCD=\frac{3π}{4}$,CD=1,求△ACD的面积.

查看答案和解析>>

同步练习册答案