精英家教网 > 高中数学 > 题目详情
9.如图,在四边形ABCD中,∠ABC=$\frac{π}{3}$,AB:BC=2:3,$AC=\sqrt{7}$.
(1)求sin∠ACB的值;
(2)若$∠BCD=\frac{3π}{4}$,CD=1,求△ACD的面积.

分析 (1)在△ABC中,由已知及余弦定理,比例的性质即可解得BC=3,AB=2,由正弦定理即可解得sin∠ACB的值
(2)由(1)及余弦定理可求cos∠ACB,利用两角差的正弦函数公式可求sin∠ACD的值,利用三角形面积公式即可计算得解.

解答 解:(1)∵∠ABC=$\frac{π}{3}$,AB:BC=2:3,$AC=\sqrt{7}$,可得:AB=$\frac{2BC}{3}$,
∴在△ABC中,由余弦定理AC2=AB2+BC2-2AB•BC•cos∠ABC,可得:7=$\frac{4B{C}^{2}}{9}$+BC2-$\frac{2B{C}^{2}}{3}$,
∴解得:BC=3,AB=2,
∴由正弦定理可得:sin∠ACB=$\frac{AB•sin∠ABC}{AC}$=$\frac{2×\frac{\sqrt{3}}{2}}{\sqrt{7}}$=$\frac{\sqrt{21}}{7}$.
(2)∵由(1)及余弦定理可得:
cos∠ACB=$\frac{A{C}^{2}+B{C}^{2}-A{B}^{2}}{2•AC•BC}$=$\frac{7+9-4}{2×\sqrt{7}×3}$=$\frac{2\sqrt{7}}{7}$,
∴sin$∠ACD=sin(\frac{3π}{4}-∠ACB)$=$\frac{\sqrt{2}}{2}$(cos∠ACB+sin∠ACB)
=$\frac{\sqrt{2}}{2}$($\frac{2\sqrt{7}}{7}$+$\frac{\sqrt{21}}{7}$),
∴S△ACD=$\frac{1}{2}$AC•CD•sin∠ACD=$\frac{1}{2}×\sqrt{7}×$1×$\frac{\sqrt{2}}{2}$×($\frac{2\sqrt{7}}{7}$+$\frac{\sqrt{21}}{7}$)=$\frac{2\sqrt{2}+\sqrt{6}}{4}$.

点评 本题主要考查了余弦定理,比例的性质,正弦定理,两角差的正弦函数公式,三角形面积公式以及特殊角的三角函数值在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知直线x+y=a与圆O:x2+y2=8交于A,B两点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,则实数a的值为(  )
A.2B.2$\sqrt{2}$C.2$\sqrt{2}$或-2$\sqrt{2}$D.4或-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知平面向量$\overrightarrow a,\overrightarrow b$为单位向量,$|\overrightarrow a+\overrightarrow b|=1$,则向量$\overrightarrow a,\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某人从银行贷款a万元,分五期等额还清,经过一期的时间后第一次还款,期利率为r.
(1)按复利(本期的利息计入下期的本金生息)计算,每期须还多少万元?
(2)按单利(本期的利息不计入下期的本金生息)计算,每期须还多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={x|-2<x<3},B={y|y=|x|-3,x∈A},则A∩B等于(  )
A.{x|0<x<3}B.{x|-1<x<0}C.{x|-2<x<0}D.{x|-3<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC中,边a,b,c的对角分别为A,B,C,且$a=\sqrt{6}$,$c=\sqrt{2}$,$A=\frac{2π}{3}$.
(Ⅰ)求B,C及△ABC的面积;
(Ⅱ)已知函数f(x)=sinBsinπx-cosBcosπx,把函数y=f(x)的图象向左平移$\frac{1}{2}$个单位得函数y=g(x)的图象,求函数y=g(x)(x∈[0,2])上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{0B}$=$\overrightarrow{b}$,已知$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,当△AOB的面积最大时,求∠AOB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.现有5个红色气球和4个黄色气球,红色气球内分别装有编号为1、3、5、7、9的号签,黄色气球内分别装有编号为2、4、6、8的号签,参加游戏者,先对红色气球随机射击一次,记所得编号为a,然后对黄色气球随机射击一次,若所得编号为2a,则游戏结束;否则再对黄色气球随机射击一次,将从黄色气球中所得编号相加,若和为2a,则游戏结束;否则继续对剩余的黄色气球进行射击,直到和为2a为止,或者到黄色气球打完为止,游戏结束.
(1)求某人只射击两次的概率;
(2)若某人射击气球的次数ξ与所得奖金的关系为η=10(5-ξ),求他所得奖金η的布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2sin(ωx+φ-$\frac{π}{6}$)(0<φ<π,ω>0))为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为$\frac{π}{2}$.(I)求f($\frac{π}{8}$)的值;
(Ⅱ)将函数y=f(x)的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再将图象向右平移$\frac{π}{6}$个单位后,得到函数y=g(x)的图象,若关于x的方程g2(x+$\frac{π}{6}$)+2mcosx+4=0在x∈(0,$\frac{π}{2}$)有实数解,求实数m的取值.

查看答案和解析>>

同步练习册答案