精英家教网 > 高中数学 > 题目详情
在△ABC中,
AB
=
a
AC
=
b
,若
BC
=
DC
AE
=2
EC
,则
ED
=
 
.(用
a
b
表示)
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:利用沙尔定理直接将向量
ED
写成
DB
+
BA
+
AE
,再结合已知的条件将每个向量用
a
b
表示出来即可.
解答: 解:因为
BD
=
DC
,所以
DB
=
1
2
CB
=
1
2
(
AB
-
AC
)=
1
2
(
a
-
b
)

因为
AE
=2
EC
,所以
AE
=
2
3
AC
=
2
3
b
BA
=-
AB
=-
a

所以
DE
=
DB
+
BA
+
AE
,将上述结果代入前式得:
DE
=
1
2
(
a
-
b
)-
a
+
2
3
b
=-
1
2
a
+
1
6
b

所以
ED
=-
DE
=
1
2
a
-
1
6
b

故答案为:
1
2
a
-
1
6
b
点评:本题考查了平面向量加法、减法的几何意义以及数乘的运算.要注意向量间方向、模长间的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

大小已知三棱柱ABC-A1B1C1在某个直角坐标系中,
AB
=(
m
2
-
3
2
m,0),
AC
=(m,0,0),
AA1
=(0,0,n),m、n>0,m=
2
n,求直线CA1与平面A1ABB1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于集合A,定义了一种运算“⊕”,使得集合A中的元素间满足条件:如果存在元素e∈A,使得对任意a∈A,都有e⊕a=a⊕e=a,则称元素e是集合A对运算“⊕”的单位元素.例如:A=R,运算“⊕”为普通乘法;存在1∈R,使得对任意a∈R,都有1×a=a×1=a,所以元素1是集合R对普通乘法的单位元素.
下面给出三个集合及相应的运算“⊕”:
①A=R,运算“⊕”为普通减法;
②A={Am×n|Am×n表示m×n阶矩阵,m∈N*,n∈N*},运算“⊕”为矩阵加法;
③A={X|X⊆M}(其中M是任意非空集合),运算“⊕”为求两个集合的交集.
其中对运算“⊕”有单位元素的集合序号为(  )
A、①②B、①③C、①②③D、②③

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ln(x+1)-
2
x
的零点所在的大致区间是(  )
A、(3,4)
B、(2,3)
C、(1,2)
D、(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导数是f′(x),求函数[f(x)]2的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:

经过双曲线x2-y2=1的左焦点F1作倾斜角为
π
3
的弦AB.求:
(1)|AB|;
(2)△F2AF1的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:
3
sin240°
-
1
cos240°
=32sin10°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
1+x2
+y)•(
1+y2
+x)=1,求证:x+y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A+B=225°,求
1
1+tanA
1
1+tanB
的值.

查看答案和解析>>

同步练习册答案