精英家教网 > 高中数学 > 题目详情
12.已知{an}是公差为1的等差数列,a3+a7=10
(1)求数列{an}的通项公式;
(2)设$b_n=2^{a_n}+a_n$,求数列{bn}的前n项和Tn

分析 (1)利用等差数列的通项公式,求出公差,然后求解通项公式.
(2)化简数列的通项公式,然后求解数列的和.

解答 解:(1)∵d=1,a3+a7=10,∴a1=1∴an=n
(2)bn=2n+n,
Tn=( 21+22+23+…+2n)+(1+2+3+…+n)=$2^{n+1}-2+\frac{n•(n+1)}{2}$

点评 本题考查数列的通项公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.现由某校高二年级四个班学生34人,其中一、二、三、四班分别为7人、8人、9人、10人,他们自愿组成数学课外小组.
(1)选其中一人为负责人,有多少种不同的选法?
(2)每班选一名组长,有多少种不同的选法?
(3)推选二人做中心发言,这二人需来自不同的班级,有多少种不同的选法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(Ⅰ)化简$\frac{cos(α-\frac{3}{2}π)}{sin(\frac{π}{2}+α)}$•sin(α-π)•cos(2π-α);
(Ⅱ)已知sin θ=$\frac{12}{13}$,θ为锐角,求cos($\frac{π}{4}$-θ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知2cosθ+sinθ=0,且θ∈(0,π).
(Ⅰ)分别求tanθ,sinθ,cosθ的值;
(Ⅱ)若sin(θ-φ)=$\frac{{\sqrt{10}}}{10}$,$\frac{π}{2}$<φ<π,求cosφ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,已知P是函数f(x)=xlnx-x的图象上的动点,该曲线在点P处的切线l交y轴于点M(0,yM),过点P作l的垂线交y轴于点N(0,yN).则$\frac{y_N}{y_M}$的范围是(-∞,-1]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.条件“x=1”是条件“x2-1=0”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(文科做)设全集是实数集R,A={x|x2+x-6≤0},B={x|x2+a<0}.
(1)当a=-4时,求A∩B和A∪B;
(2)若A∩B=B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=|{\overrightarrow b}|=2$,且$\overrightarrow a•({\overrightarrow b-\overrightarrow a})=-6$,则$\overrightarrow a,\overrightarrow b$的夹角是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知Sn为等比数列{an}的前n项和,公比q=2,S99=154,则a3+a6+a9+…+a99=88.

查看答案和解析>>

同步练习册答案