精英家教网 > 高中数学 > 题目详情
若tanα=2,求
2sinα+cosα
sinα-cosα
和sin2α-2sinαcosα+3cos2α的值.
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:第一个式子分子分母除以cosα,利用同角三角函数间的基本关系变形,将tanα的值代入计算即可求出值;
第二个式子分母看做“1”,分子分母除以cos2α变形后,将tanα的值代入计算即可求出值.
解答: 解:∵tanα=2,
2sinα+cosα
sinα-cosα
=
2tanα+1
tanα-1
=
4+1
2-1
=5;
sin2α-2sinαcosα+3cos2α=
sin2α-2sinαcosα+3cos2α
sin2α+cos2α
=
tan2α-2tanα+3
tan2α+1
=
4-4+3
4+1
=
3
5
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新不动点”,则下列函数有且只有一个“新不动点”的函数是(  )
g(x)=
1
2
x2

②g(x)=-ex-2x;
③g(x)=lnx;
④g(x)=sinx+2cosx.
A、①②B、②③C、②④D、②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{bn}中,b1+2b2+…+2n-1bn=2n2+n
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,0),B(0,1),C(2sinθ,cosθ).
(Ⅰ)若|
AC
|=|
BC
|,求tanθ的值;
(Ⅱ)若(
OA
+2
OB
)•
OC
=1,其中O为坐标原点,求sinθ+cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{bn}满足b1=
3
4
,a1=
1
4
,an+bn=1,bn+1=
bn
1
-a
2
n

(Ⅰ)求b1,b2,b3,b4;   
(Ⅱ)求数列{ bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是等差数列,a1=3,Sn是其前n项和,在各项均为正数的等比数列{bn}中,b1=1,且b2+S2=10,S5=5b3+3a2
(I )求数列{an},{bn}的通项公式;
(Ⅱ)设cn=
2
Sn
,数列{cn}的前n项和为Tn,求证Tn
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<
π
2
,求该函数的解析式,并求f(0)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合M={x||x-3|≤4},N={y|y=
x-2
+
2-x
},则 M∩N=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

焦点是(0,3)的抛物线的标准方程是
 
,准线方程是x=-2的抛物线的标准方程
 

查看答案和解析>>

同步练习册答案