精英家教网 > 高中数学 > 题目详情
16.已知数列{an}满足:an=$\frac{1}{{n}^{2}+n}$,且Sn=$\frac{10}{11}$,则n的值为(  )
A.8B.9C.10D.11

分析 直接根据裂项求和即可求出n的值.

解答 解:∵an=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴Sn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$
∵Sn=$\frac{10}{11}$,
∴$\frac{10}{11}$=$\frac{n}{n+1}$,
解得n=10,
故选:C

点评 本题考查了裂项求和,关键是掌握裂项求和的方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知实数x,y满足不等式组$\left\{\begin{array}{l}{y-x≤2}\\{x+y≥4}\\{3x-y≤5}\end{array}\right.$,若目标函数z=y-mx取得最大值时有唯一的最优解(1,3),则实数m的取值范围是(  )
A.m<-1B.0<m<1C.m>1D.m≥1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=$\frac{1}{3}$sin(2x+$\frac{π}{5}$)的周期T=π,φ=$\frac{π}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的三个顶点为A(1,4),B(-2,3),C(4,-5),求△ABC的外接圆方程、外心坐标和外接圆半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知命题p:$\frac{6-x}{x+2}$<0,命题q:x2-4x+4-m2>0(m>0),若命题$\overline{q}$是命题$\overline{p}$的充分不必要条件,则实数m的范围是(0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知tanα=-$\frac{2}{3}$,且角α是第二象限的角,求sinα,cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知sinα+cosα=-$\frac{\sqrt{7}}{2}$,sinα-cosα=$\frac{1}{2}$,计算下列各式的值:
(1)sinαcosα;
(2)sin4α-cos4α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过点(3,4)且与3x-2y-7=0垂直的直线方程是(  )
A.2x+3y-18=0B.3x+2y-17=0C.2x+3y+18=0D.2x-3y+6=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,$\overrightarrow{OC}$=2$\overrightarrow{OA}$,$\overrightarrow{OD}$=3$\overrightarrow{OB}$,记$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,线段AD交BC于点E,试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{OE}$,则$\overrightarrow{OE}$=$\frac{4}{5}\overrightarrow{a}$$+\frac{3}{5}\overrightarrow{b}$.

查看答案和解析>>

同步练习册答案