精英家教网 > 高中数学 > 题目详情
11.已知命题p:$\frac{6-x}{x+2}$<0,命题q:x2-4x+4-m2>0(m>0),若命题$\overline{q}$是命题$\overline{p}$的充分不必要条件,则实数m的范围是(0,4).

分析 求出命题p,q的等价条件,利用¬p是¬q的充分不必要条件,即可求出m的取值范围.

解答 解:由:$\frac{6-x}{x+2}$<0得(x+2)(x-6)>0,解得x>6或x<-2,
则¬p:-2≤x≤6,
∵q:x2-4x+4-m2>0,
∴¬q:x2-4x+4-m2≤0,
即[x-(2+m)][(x-(2-m)]≤0,
解得2-m≤x≤2+m
要使?p是?q的充分不必要条件,
∴$\left\{\begin{array}{l}{2-m>-2}\\{2+m<6}\end{array}\right.$,
则0<m<4
故答案为:(0,4).

点评 本题主要考查充分条件和必要条件的应用,求出命题的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.判断函数f(x)=xln(x+$\sqrt{{x}^{2}+1}$)的奇偶性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图是某算法的程序框图,若程序运行后输出S的结果是765,则判断框内需填入的条件是n>5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$\frac{sinθ-cosθ}{sinθ+cosθ}$=$\frac{1}{2}$,求:
(1)3cos2θ-sin2θ+1;
(2)$\frac{1-2co{s}^{2}\frac{θ}{2}+2sinθ}{2sin(θ+\frac{3π}{4})}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如果函数y=sin2x+acos2x的图象关于点(-$\frac{π}{6}$,0)对称,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}满足:an=$\frac{1}{{n}^{2}+n}$,且Sn=$\frac{10}{11}$,则n的值为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知sinx=-0.427,求0°~360°范围内的角x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.sinα+cosα=$\frac{\sqrt{5}}{2}$,α∈(0,π),求
(1)cos2α
(2)tanα

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.直线l过点P(4,1),且在x轴与y轴上的截距分别为a,b.
(1)若a>0,b>0,求ab取得最小值时的直线l的方程;
(2)若a>0,b>0,求a+b取得最小值时的直线l的方程;
(3)求点P到直线(2m-1)x+(m+3)y+(11-m)=0的最大距离.

查看答案和解析>>

同步练习册答案