精英家教网 > 高中数学 > 题目详情
8.已知sinα+cosα=-$\frac{\sqrt{7}}{2}$,sinα-cosα=$\frac{1}{2}$,计算下列各式的值:
(1)sinαcosα;
(2)sin4α-cos4α.

分析 由条件利用同角三角函数的基本关系,求得要求式子的值.

解答 解:(1)∵sinα+cosα=-$\frac{\sqrt{7}}{2}$,平方可得1+2sinα•cosα=$\frac{7}{4}$,
∴sinαcosα=$\frac{3}{8}$.
(2)∵sinα+cosα=-$\frac{\sqrt{7}}{2}$,sinα-cosα=$\frac{1}{2}$,∴sin2α-cos2α=-$\frac{\sqrt{7}}{4}$,
∴sin4α-cos4α=(sin2α+cos2α)•(sin2α-cos2α)=sin2α-cos2α=-$\frac{\sqrt{7}}{4}$.

点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若复数z=x+yi(x,y∈R)满足|z|≤1,则|z-2i|的取值范围是[1,3],|2x+y-4|+|6-x-3y|的最大值是15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$\frac{sinθ-cosθ}{sinθ+cosθ}$=$\frac{1}{2}$,求:
(1)3cos2θ-sin2θ+1;
(2)$\frac{1-2co{s}^{2}\frac{θ}{2}+2sinθ}{2sin(θ+\frac{3π}{4})}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}满足:an=$\frac{1}{{n}^{2}+n}$,且Sn=$\frac{10}{11}$,则n的值为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知sinx=-0.427,求0°~360°范围内的角x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知sin($\frac{π}{4}$+x)=$\frac{12}{13}$,0<x<$\frac{π}{4}$,求$\frac{cos2x}{cos(\frac{π}{4}-x)}$的值为$\frac{10}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.sinα+cosα=$\frac{\sqrt{5}}{2}$,α∈(0,π),求
(1)cos2α
(2)tanα

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求过两条直线3x+y-8=0与2x-y+3=0的交点,且分别满足下列条件的直线方程:
(1)与直线2x-y+6=0在y轴上的截距相等;
(2)倾斜角α满足关系式sinα=cosα

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,内角A,B,C的对边分别为a,b,c,己知a=bcosC+csinB,求B.

查看答案和解析>>

同步练习册答案