精英家教网 > 高中数学 > 题目详情
14.已知M(x0,y0)是抛物线C:y2=8x上一点,F为抛物线C的焦点,若|MF|>4,则x0的取值范围是(  )
A.(-∞,2)B.(2,+∞)C.(-∞,4)D.(4,+∞)

分析 求出抛物线的焦点和准线方程,运用抛物线的定义,由条件可得x0+2>4,即可求得x0的取值范围.

解答 解:抛物线C:y2=8x的焦点为(2,0),准线为x=-2,
由抛物线的定义可得,|MF|=x0+2,
若|MF|>4,
即为x0+2>4,
解得x0>2.
故选:B.

点评 本题考查抛物线的定义、方程和性质,主要考查抛物线的定义的运用,同时考查不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知某三棱锥的三视图均为腰长为2的等腰直角三角形(如图),则该棱锥的外接球的半径是(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设锐角三角形ABC的三个内角A、B、C所对应的边分别为a、b、c,若a=2,B=2A,则b的取值范围为(2$\sqrt{2}$,2$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=6,sinA-sinC=sin(A-B);
(Ⅰ)求B;
(Ⅱ)若b=2$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某品牌电视机代理销售商根据近年销售和利润情况得出某种型号电视机的利润情况有如下规律:每台电视机的最终销售利润L(单位:元)与其无故障使用时间T(单位:年)满足:L=$\left\{\begin{array}{l}0,T≤1\\ 100,1<T<3\\ 200,T≥3\end{array}$.设每台该种电视机的无故障使用时间T≤1、1<t<3、T≥3三种情况发生的概率分别为P1、P2、P3,已知P1+P2=$\frac{3}{5}$,P2=P3
(Ⅰ)求P1、P2、P3的值;
(Ⅱ)记X表示销售两台这种电视机的销售利润总和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=sin(x+φ)-2sinφcosx的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设n∈N*,函数$f(x)=\frac{lnx}{x^n}$,函数$g(x)=\frac{e^x}{x^n}$,x∈(0,+∞).
(Ⅰ)判断函数f(x)在区间(0,+∞)上是否为单调函数,并说明理由;
(Ⅱ)若当n=1时,对任意的x1,x2∈(0,+∞),都有f(x1)≤t≤g(x2)成立,求实数t的取值范围;
(Ⅲ)当n>2时,若存在直线l:y=t(t∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,写出n的所有可能取值.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知等差数列{an}的公差为2,若a4是a2,a8的等比中项,则数列{an}的前5项和为S5=30.

查看答案和解析>>

科目:高中数学 来源:2017届河北正定中学高三上月考一数学(理)试卷(解析版) 题型:选择题

如图,在直三棱柱中,,过的中点作平面的垂线,交平面,则与平面所成角的正切值为( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案