精英家教网 > 高中数学 > 题目详情
7.已知各项均为正数的等比数列{an}的公比为q,其n项和为Sn,a2a4=64,S3=14,若{bn}是以a2为首项、q为公差的等差数列,则b2016=(  )
A.4032B.4034C.2015D.2016

分析 利用等差数列与等比数列的通项公式及其前n项和公式即可得出.

解答 解:∵等比数列{an}中,a2a4=64,S3=14,由题意得q≠1,
∴$\left\{\begin{array}{l}{a_1}•q•{a_1}•{q^3}=64\\ \frac{{{a_1}(1-{q^3})}}{1-q}=14\end{array}\right.$,解得$\left\{\begin{array}{l}{a_1}=2\\ q=2\end{array}\right.$,
∴a2=4,
∴等差数列{bn}的通项bn=2n+2,
∴b2016=4034,
故选:B.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.给出下列说法:
①第二象限角大于第一象限角;
②三角形的内角是第一象限角或第二象限角;
③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;
④若sin α=sin β,则α与β的终边相同;
⑤若cos θ<0,则θ是第二或第三象限或x轴负半轴的角.
其中错误说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z=$\frac{1}{1+i}$-i(i为虚数单位),则|z|=(  )
A.$\frac{5}{2}$B.$\frac{\sqrt{10}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的离心率e=$\frac{{\sqrt{3}}}{2}$,一个焦点为F(${\sqrt{3}$,0).
(I)求椭圆的方程;
(Ⅱ)设B是椭圆与y轴负半轴的交点,过点B作椭圆的两条弦BM和BN,且BM⊥BN.
(i)直线MN是否过定点,如果是求出该点坐标,如果不是请说明理由;
(ii)若△BMN是等腰直角三角形,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.sin(α+$\frac{π}{4}}$)=$\frac{5}{13}$,则cos(${\frac{π}{4}$-α)的值为$\frac{5}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某校共有1200名高三学生,若在一次考试中全校高三学生的数学成绩X服从正态分布N(110,σ2)(σ>0),若P(100≤X≤110)=0.35,则该校高三学生数学成绩在120分以上的有180人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,则m=(  )
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若△ABC的内角A、B、C所对的边a、b、c满足(a+b)2-c2=3,且C=60°,则ab的值为(  )
A.$\frac{4}{3}$B.6-3$\sqrt{3}$C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知3a=5b=c,且$\frac{1}{a}$+$\frac{1}{b}$=2,求c的值.
(2)若2x=3y,且x,y都是正数,判断2x,3y的大小关系.

查看答案和解析>>

同步练习册答案