3£®ÒÑÖª¼¯ºÏMÊÇÂú×ãÏÂÁÐÐÔÖÆµÄº¯Êýf£¨x£©µÄÈ«Ì壬´æÔÚʵÊýa¡¢k£¨k¡Ù0£©£¬¶ÔÓÚ¶¨ÒåÓòÄÚµÄÈÎÒâx¾ùÓÐf£¨a+x£©=kf£¨a-x£©³ÉÁ¢£¬³ÆÊý¶Ô£¨a£¬k£©Îªº¯Êýf£¨x£©µÄ¡°°éËæÊý¶Ô¡±£®
£¨1£©ÅжÏf£¨x£©=x2ÊÇ·ñÊôÓÚ¼¯ºÏM£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Èôº¯Êýf£¨x£©=sinx¡ÊM£¬ÇóÂú×ãÌõ¼þµÄº¯Êýf£¨x£©µÄËùÓС°°éËæÊý¶Ô¡±£»
£¨3£©Èô£¨1£¬1£©£¬£¨2£¬-1£©¶¼ÊǺ¯Êýf£¨x£©µÄ¡°°éËæÊý¶Ô¡±£¬µ±1¡Üx£¼2ʱ£¬f£¨x£©=cos£¨$\frac{¦Ð}{2}$x£©£»µ±x=2ʱ£¬f£¨x£©=0£¬Çóµ±2014¡Üx¡Ü2016ʱ£¬º¯Êýy=f£¨x£©µÄ½âÎöʽºÍÁãµã£®

·ÖÎö £¨1£©f£¨x£©=x2µÄ¶¨ÒåÓòΪR£®¼ÙÉè´æÔÚʵÊýa¡¢k£¨k¡Ù0£©£¬¶ÔÓÚ¶¨ÒåÓòÄÚµÄÈÎÒâx¾ùÓÐf£¨a+x£©=kf£¨a-x£©³ÉÁ¢£¬Ôò£¨a+x£©2=k£¨a-x£©2£¬»¯Îª£º£¨k-1£©x2-2a£¨k+1£©x+a2£¨k-1£©=0£¬ÓÉÓÚÉÏʽ¶ÔÓÚÈÎÒâʵÊýx¶¼³ÉÁ¢£¬¿ÉµÃ$\left\{\begin{array}{l}{k-1=0}\\{2a£¨k+1£©=0}\\{{a}^{2}£¨k-1£©=0}\end{array}\right.$£¬½âµÃk£¬a£®¼´¿ÉµÃ³ö£®
£¨2£©º¯Êýf£¨x£©=sinx¡ÊM£¬¿ÉµÃ£ºsin£¨a+x£©=ksin£¨a-x£©£¬Õ¹¿ª»¯Îª£º$\sqrt{{k}^{2}+2kcos2a+1}$sin£¨x+¦Õ£©=0£¬ÓÉÓÚ?x¡ÊR¶¼³ÉÁ¢£¬¿ÉµÃk2+2kcos2a+1=0£¬±äÐÎcos2a=$-\frac{1}{2}£¨k+\frac{1}{k}£©$£¬ÀûÓûù±¾²»µÈʽµÄÐÔÖÊÓëÈý½Çº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
£¨3£©ÓÉÓÚ£¨1£¬1£©£¬£¨2£¬-1£©¶¼ÊǺ¯Êýf£¨x£©µÄ¡°°éËæÊý¶Ô¡±£¬¿ÉµÃf£¨1+x£©=f£¨1-x£©£¬f£¨2+x£©=-f£¨2-x£©£¬Òò´Ëf£¨x+4£©=f£¨x£©£¬T=4£®¶Ôx·ÖÀàÌÖÂۿɵ㺼´¿ÉµÃ³ö½âÎöʽ£¬½ø¶øµÃ³öÁãµã£®

½â´ð ½â£º£¨1£©f£¨x£©=x2µÄ¶¨ÒåÓòΪR£®
¼ÙÉè´æÔÚʵÊýa¡¢k£¨k¡Ù0£©£¬¶ÔÓÚ¶¨ÒåÓòÄÚµÄÈÎÒâx¾ùÓÐf£¨a+x£©=kf£¨a-x£©³ÉÁ¢£¬
Ôò£¨a+x£©2=k£¨a-x£©2£¬»¯Îª£º£¨k-1£©x2-2a£¨k+1£©x+a2£¨k-1£©=0£¬
ÓÉÓÚÉÏʽ¶ÔÓÚÈÎÒâʵÊýx¶¼³ÉÁ¢£¬¡à$\left\{\begin{array}{l}{k-1=0}\\{2a£¨k+1£©=0}\\{{a}^{2}£¨k-1£©=0}\end{array}\right.$£¬½âµÃk=1£¬a=0£®
¡à£¨0£¬1£©ÊǺ¯Êýf£¨x£©µÄ¡°°éËæÊý¶Ô¡±£¬f£¨x£©¡ÊM£®
£¨2£©¡ßº¯Êýf£¨x£©=sinx¡ÊM£¬
¡àsin£¨a+x£©=ksin£¨a-x£©£¬¡à£¨1+k£©cosasinx+£¨1-k£©sinacosx=0£¬
¡à$\sqrt{{k}^{2}+2kcos2a+1}$sin£¨x+¦Õ£©=0£¬
¡ß?x¡ÊR¶¼³ÉÁ¢£¬¡àk2+2kcos2a+1=0£¬
¡àcos2a=$-\frac{1}{2}£¨k+\frac{1}{k}£©$£¬$|k+\frac{1}{k}|$¡Ý2£¬
¡à|cos2a|¡Ý1£¬ÓÖ|cos2a|¡Ü1£¬
¹Ê|cos2a|=1£®
µ±k=1ʱ£¬cos2a=-1£¬a=n¦Ð+$\frac{¦Ð}{2}$£¬n¡ÊZ£®
µ±k=-1ʱ£¬cos2a=1£¬a=n¦Ð£¬n¡ÊZ£®
¡àf£¨x£©µÄ¡°°éËæÊý¶Ô¡±Îª£¨n¦Ð+$\frac{¦Ð}{2}$£¬1£©£¬£¨n¦Ð£¬-1£©£¬n¡ÊZ£®
£¨3£©¡ß£¨1£¬1£©£¬£¨2£¬-1£©¶¼ÊǺ¯Êýf£¨x£©µÄ¡°°éËæÊý¶Ô¡±£¬
¡àf£¨1+x£©=f£¨1-x£©£¬f£¨2+x£©=-f£¨2-x£©£¬
¡àf£¨x+4£©=f£¨x£©£¬T=4£®
µ±0£¼x£¼1ʱ£¬Ôò1£¼2-x£¼2£¬´Ëʱf£¨x£©=f£¨2-x£©=-cos$£¨\frac{¦Ð}{2}x£©$£»
µ±2£¼x£¼3ʱ£¬Ôò1£¼4-x£¼2£¬´Ëʱf£¨x£©=-f£¨4-x£©=-cos$£¨\frac{¦Ð}{2}x£©$£»
µ±3£¼x£¼4ʱ£¬Ôò0£¼4-x£¼1£¬´Ëʱf£¨x£©=-f£¨4-x£©=cos$£¨\frac{¦Ð}{2}x£©$£®
¡àf£¨x£©=$\left\{\begin{array}{l}{-cos£¨\frac{¦Ð}{2}x£©£¬0£¼x£¼1}\\{cos£¨\frac{¦Ð}{2}x£©£¬1£¼x£¼2}\\{-cos£¨\frac{¦Ð}{2}x£©£¬2£¼x£¼3}\\{cos£¨\frac{¦Ð}{2}x£©£¬3£¼x£¼4}\\{0£¬x=0£¬1£¬2£¬3£¬4}\end{array}\right.$£®
¡àf£¨x£©=$\left\{\begin{array}{l}{-cos£¨\frac{¦Ð}{2}x£©£¬2014£¼x£¼2015}\\{cos£¨\frac{¦Ð}{2}x£©£¬2015£¼x£¼2016}\\{0£¬x=2014£¬2015£¬2016}\end{array}\right.$£®
¡àµ±2014¡Üx¡Ü2016ʱ£¬º¯Êýy=f£¨x£©µÄÁãµãΪ2014£¬2015£¬2016£®

µãÆÀ ±¾Ì⿼²éÁËж¨Òå¡°°éËæÊý¶Ô¡±¡¢Èý½Çº¯ÊýµÄµ¥µ÷ÐÔ¡¢»ù±¾²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁË·ÖÀàÌÖÂÛ˼Ïë·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®º¯Êýy=$\frac{1}{\sqrt{{x}^{2}+px+q}}$µÄ¶¨ÒåÓòΪ£¨-¡Þ£¬-1£©¡È£¨2£¬+¡Þ£©£¬Ôòp=-1£¬q=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®º¯Êýf£¨x£©=log${\;}_{\frac{1}{2}}$£¨4x-3£©µÄµÝ¼õÇø¼äΪ£¨$\frac{3}{4}$£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖª¶¨ÒåÔÚRÉϺ¯Êýy=f£¨x+1£©ÊÇżº¯Êý£¬ÇÒÔÚ[1£¬+¡Þ£©Éϵ¥µ÷£¬ÈôÊýÁÐ{an}Êǹ«²î²»Îª0µÄµÈ²îÊýÁУ¬ÇÒf£¨a6£©=f£¨a20£©£¬Ôò{an}µÄǰ25ÏîÖ®ºÍΪ£¨¡¡¡¡£©
A£®0B£®$\frac{25}{2}$C£®25D£®50

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®º¯Êýf£¨x£©=xcosx-5sinx£¬Èôf£¨2£©=a£¬Ôòf£¨-2£©Îª-a£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®µãOΪ¡÷ABCÄÚÒ»µã£¬ÇÒÂú×ã$\overrightarrow{OA}+\overrightarrow{OB}+4\overrightarrow{OC}=\overrightarrow{0}$£¬Éè¡÷OBCÓë¡÷ABCµÄÃæ»ý·Ö±ðΪS1¡¢S2£¬Ôò$\frac{{S}_{1}}{{S}_{2}}$=£¨¡¡¡¡£©
A£®$\frac{1}{8}$B£®$\frac{1}{6}$C£®$\frac{1}{4}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=|x-2|-|x+1|£®
£¨1£©½â²»µÈʽf£¨x£©£¾1£®
£¨2£©µ±x£¾0ʱ£¬º¯Êýg£¨x£©=$\frac{a{x}^{2}-x+1}{x}$£¨a£¾0£©µÄ×îСֵ×Ü´óÓÚº¯Êýf£¨x£©£¬ÊÔÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®f¡ä£¨x£©ÊÇf£¨x£©=cosxµÄµ¼º¯Êý£¬Ôò$f'£¨\frac{¦Ð}{2}£©$µÄÖµÊÇ£¨¡¡¡¡£©
A£®3B£®-3C£®-1D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¡ÑAµÄ·½³ÌΪ£¨x-2£©2+£¨y-2£©2=1£¬ÔÚµÚÒ»ÏóÏÞÄÚÁ½°ë¾¶¶¼ÊÇr£¬ÇÒ»¥ÏàÍâÇеġÑO1ºÍ¡ÑO2¾ùÓë¡ÑAÏàÍâÇУ¬ÓÖ¡ÑO1£¬¡ÑO2·Ö±ðÓëxÖᣬyÖáÏàÇУ¬Çór£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸