分析 (1)根据函数y=Asin(ωx+φ)的图象变换规律,求得f(x)的解析式.
(2)由题意可得当x∈[0,3π]时,函数f(x)的图象和直线y=m只有一个交点,数形结合可得m的范围.
解答
解:(1)将y=sinx的图象向左平移$\frac{π}{6}$个单位长度得到y=sin(x+$\frac{π}{6}$)的图象,保持纵坐标不变,
横坐标变为原来的2倍,
可得y=f(x)=sin($\frac{1}{2}$x+$\frac{π}{6}$)的图象.
(2)∵x∈[0,3π],∴$\frac{1}{2}$x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{5π}{3}$],sin($\frac{1}{2}$x+$\frac{π}{6}$)∈[-1,1],
∵当x∈[0,3π]时,方程f(x)=m有唯一实数根,∴函数f(x)的图象和直线y=m只有一个交点,
如图所示:故方程f(x)=m有唯一实数根的m的取值范围为(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$)∪{1,-1}.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象,方程根的存在性以及个数判断,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 在纵坐标不变时,横坐标伸长到原来的2倍 | |
| B. | 在纵坐标不变时,横坐标缩短到原来的$\frac{1}{2}$倍 | |
| C. | 在横坐标不变时,纵坐标伸长到原来的2倍 | |
| D. | 在横坐标不变时,纵坐标缩短到原来的$\frac{1}{2}$倍 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{π}{3}$,$\frac{5π}{6}$) | B. | ($\frac{π}{6}$,$\frac{5π}{6}$) | C. | ($\frac{π}{2}$,π) | D. | ($\frac{2π}{3}$,π) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | 1 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com