精英家教网 > 高中数学 > 题目详情

【题目】设关于 x 的函数fx=lgx2﹣2x﹣3的定义域为集合 A,函数 g(x)=x﹣a,(0≤x≤4)的值域为集合 B.

(1)求集合 A,B;

(2)若集合 A,B 满足 A∩B=B,求实数 a 的取值范围.

【答案】(1)见解析(2) {a|a>5 a<﹣3}

【解析】

分析:(1)利用对数函数的定义域能求出集合A,利用一次函数的值域能求出集合B;

(2)由集合A,B满足,得,由此能求出实数 a 的取值范围.

详解:(1)由题意可知:A={x|x2﹣2x﹣3>0}={x|(x﹣3)(x+1)>0}={x|x<﹣1 x>3},

0≤x≤4,得﹣a≤x﹣a≤4﹣a,

B={y|﹣a≤y≤4﹣a};

(2)A∩B=B,BA4﹣a<﹣1 ﹣a>3,解得:a>5 a<﹣3.

∴实数 a 的取值范围是{a|a>5 a<﹣3}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数exf(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为
①f(x)=2x②f(x)=3x③f(x)=x3④f(x)=x2+2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】这六个数字.

)能组成多少个无重复数字的四位偶数.

)能组成多少个比大的四位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系xOy中,过点P(﹣1,﹣2)的直线l的参数方程为 (t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsinθtanθ=2a(a>0),直线l与曲线C相交于不同的两点M、N.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若|PM|=|MN|,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12)

已知函数,.

)求的定义域;

)判断的奇偶性并予以证明;

)当时,求使的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是异面直线,则以下四个命题:存在分别经过直线的两个互相垂直的平面;存在分别经过直线的两个平行平面;经过直线有且只有一个平面垂直于直线经过直线有且只有一个平面平行于直线其中正确的个数有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为,且其图象的一个对称轴为,将函数图象上所有点的橫坐标缩小到原来的倍,再将图象向左平移个单位长度,得到函数的图象.

1)求的解析式,并写出其单调递增区间;

2)求函数在区间上的零点;

3)对于任意的实数,记函数在区间上的最大值为,最小值为,求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=ex﹣ex﹣x.
(1)求f(x)的单调区间;
(2)已知g(x)=x2f(x)+(x+1)[f(x)+(1﹣a)x]+(1﹣a)x3 . 若对所有x≥0,都有g(x)≥0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】写出下列命题的否定,并判断其真假:

(1)任何有理数都是实数;

(2)存在一个实数,能使成立.

查看答案和解析>>

同步练习册答案