分析 根据规律,左边是正整数n的平方的倒数和,右边是分子是正奇数,分母是正整数n,可以猜想结论.
解答 解:根据规律,左边是正整数n的平方的倒数和,右边是分子是正奇数,分母是正整数n,
可以猜想的结论为:当n∈N且n≥2时,恒有1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$.
故答案为:1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$.
点评 本题考查的知识点是归纳推理其中分析已知中的式子,分析出两个式子之间的数据变化规律是解答的关键.
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | b<c<a | D. | b<a<c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,-1] | B. | [-1,2) | C. | [-1,1] | D. | [1,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com