精英家教网 > 高中数学 > 题目详情
12.已知集合A={x|x≥3或x≤-1},B={x|=-2≤x≤2},则A?B=(  )
A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)

分析 根据交集的定义写出A?B.

解答 解:集合A={x|x≥3或x≤-1},
B={x|-2≤x≤2},
则A?B={x|-2≤x≤-1}=[-2,-1].
故选:A.

点评 本题考查了集合的定义与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在空间中,下列说法不正确的是(  )
A.三点确定一个平面B.梯形定是平面图形
C.平行四边形一定是平面图形D.三角形一定是平面图形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.观察式子:1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$;1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$…则可归纳出第n-1个式子为1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线m,n和平面α满足m⊥α,m⊥n,则n与α的位置关系为(  )
A.n⊥αB.n?αC.n∥α或n?αD.都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$cos({α+β})=\frac{2}{3},cos({α-β})=\frac{1}{3}$,则tanα•tanβ=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a,b,c均为实数,求证:${a^2}+{b^2}+{c^2}≥\frac{1}{3}{({a+b+c})^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数$f(x)=2sin({ωx-\frac{π}{3}})-2cos2θ({ω>0})$的图象关于直线$x=-\frac{π}{12}$对称,当ω取最小正数时,方程f(x)=0在区间$[{0,\frac{π}{2}}]$上有两个不等的实根α,β,则α+β+θ的取值范围为[kπ+$\frac{3π}{4}$,kπ+$\frac{5π}{6}$)∪(kπ+$\frac{5π}{6}$,kπ+$\frac{11π}{12}$](k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.为了旅游业的发展,某旅行社组织了14人参加“旅游常识”知识竞赛,每人回答3个问题,答对题目个数及对应人数统计结果见下表:
答对题目个数0123
人数3254
根据上表信息,若从14人中任选3人,则3人答对题目个数之和为6的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{3}{14}$D.$\frac{17}{91}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足条件$\left\{\begin{array}{l}{x≥1}\\{x-2y+3≥0}\\{y≥x}\end{array}\right.$,则z=$\frac{y}{x+1}$的最小值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

同步练习册答案