精英家教网 > 高中数学 > 题目详情
18.设p:0<x<5,q:x2-4x-21<0,那么p是q的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

分析 q:x2-4x-21<0,解得-3<x<7,即可判断出结论.

解答 解:q:x2-4x-21<0,解得-3<x<7,
又p:0<x<5,
那么p是q的充分不必要条件.
故选:A.

点评 本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知异面直线a与b所成角为60°,过空间内一定点P且与直线a、b所成角均为60°的直线有(  )条.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点.请建立适当的坐标系,求解下列问题:
(Ⅰ)求证:异面直线A1D与BC互相垂直;
(Ⅱ)求二面角(钝角)D-A1C-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=e|x|,函数g(x)=$\left\{\begin{array}{l}{ex,x≤4}\\{4{e}^{5-x},x>4}\end{array}\right.$对任意的x∈[1,m](m>1),都有f(x-2)≤g(x),则m的取值范围是(  )
A.(1,2+ln2]B.(1,$\frac{7}{2}$+ln2]C.[ln2,2)D.(2,$\frac{7}{2}$+ln2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都等于2,且两两夹角为60°,则对角线BD1的长度为(  )
A.$2\sqrt{2}$B.$\sqrt{2}$C.$2\sqrt{6}$D.$\frac{{\sqrt{3}}}{2}+2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.约束条件为$\left\{\begin{array}{l}{x+y-5≤0}\\{x-y-k≤0}\\{x≥0,y≥0}\end{array}\right.$,目标函数Z=2x-y,则Z的最大值是(  )
A.-4B.4C.-5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知A(2,5,-6),点P在y轴上,|PA|=7,则点P的坐标是(  )
A.(0,8,0)B.(0,2,0)C.(0,8,0)或(0,2,0)D.(0,-8,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设A(1,0),B(2,1),C是抛物线y2=4x上的动点.
(1)求△ABC周长的最小值;
(2)若C位于直线AB左上方,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点F1,F2分别是双曲线 $\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则该双曲线离心率的取值范围是(1,1+$\sqrt{2}$);若△ABF2是直角三角形,则该双曲线的渐近线的斜率为$\sqrt{2+2\sqrt{2}}$.

查看答案和解析>>

同步练习册答案