精英家教网 > 高中数学 > 题目详情
14.如图,BA与圆O相切,切点为A,割线BN与圆O分别交于点M,N,若BA=BC,连接CM并延长,交圆O于点D,割线CN与圆O的另一个交点为E.
(1)求证:△BCM~△BNC;
(2)若∠BCD=30°,且N,O,D三点共线,求$\frac{DE+CE}{DC}$.

分析 (1)利用切割线定理,结合BA=BC,证明:△BCM~△BNC;
(2)证明DE⊥BC,可得△DCE为直角三角形,∠DCE=60°,即可求$\frac{DE+CE}{DC}$.

解答 (1)证明:∵BA与圆O相切,切点为A,割线BN与圆O分别交于点M,N,
∴BA2=BM•BN.
∵BA=BC,
∴BC2=BM•BN.
∴$\frac{BC}{BM}$=$\frac{BN}{BC}$,
∴△BCM~△BNC;
(2)解:由(1)可得∠BCD=∠BNC,
∵∠BNC=∠CDE,
∴∠CDE=∠BCD=30°,
∵N,O,D三点共线,
∴DE⊥BC,
∴△DCE为直角三角形,
∴∠DCE=60°,
∴$\frac{DE+CE}{DC}$=$\frac{DCsin60°+DCsin30°}{DC}$=$\frac{\sqrt{3}+1}{2}$.

点评 本题考查切割线定理,考查三角形相似的判定,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,二面角D-EC-B等于90°.
(Ⅰ)证明:DE⊥平面SBC;
(Ⅱ)证明:SE=2EB;
(Ⅲ)求二面角A-DE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.有40名高校应届毕业生参加某招工单位应聘,其中甲组20人学历为硕士研究生,乙组20人学历是本科,他们首先参加笔试,统计考试成绩得到的茎叶图如图(满分100分),如果成绩在86分以上(含86分)才可以进入面试阶段
(1)现从甲组中笔试成绩在90分及其以上的同学随机抽取2名,则至少有1名超过95分同学的概率;
(2)通过茎叶图填写如表的2×2列联表,并判断有多大把握认为笔试成绩与学历有关?.
本科生研究生合计
能参加面试
不能参加面试
合计
下面临界值表仅供参考
P(K2≥k00.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246,6357.87910.828
参考公式:K2=$\frac{{n{{(ac-bd)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.《太阳的后裔》是第一部中国与韩国同步播出的韩剧,爱奇艺视频网站在某大学随机调查了110名学生,得到如表列联表:由表中数据算得K2的观测值k≈7.8,因此得到的正确结论是(  )
总计
喜欢402060
不喜欢203050
总计6050110
(K2≥k)0.1000.0100.001
k2.7066.63510.828
附表:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
A.有99%以上的把握认为“喜欢该电视剧与性别无关”
B.有99%以上的把握认为“喜欢该电视剧与性别有关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=$\sqrt{2}$.
(Ⅰ)求证:AC⊥平面BCDE;
(Ⅱ)求二面角B-AD-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}满足an+1=an2-an+1,a1=2.
(1)比较an与an+2的大小;
(2)证明:${2^{{2^{n-1}}}}$<an+1-1<22n(n≥2,n∈N*);
(3)记Sn=$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}$,求$\lim_{n→∞}{S_n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2+cosα}\\{y=sinα}\end{array}\right.$(α为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(1)求曲线C与直线l在该直角坐标系下的普通方程;
(2)动点A在曲线C上,动点B在直线l上,定点P(-1,1),求|PB|+|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1的实轴长为4,离心率为$\frac{\sqrt{13}}{2}$.

查看答案和解析>>

科目:高中数学 来源:2017届甘肃会宁县一中高三上学期9月月考数学(文)试卷(解析版) 题型:解答题

已知函数.

(1)若,求的单调区间;

(2)若有最大值3,求的值.

查看答案和解析>>

同步练习册答案