【题目】已知椭圆
的左、右焦点分别为
,椭圆
过点
,直线
交
轴于
,且
,
为坐标原点.
(1)求椭圆
的方程;
(2)设
是椭圆
的上顶点,过点
分别作直线
交椭圆
于
两点,设这两条直线的斜率分别为
,且
,证明:直线
过定点.
科目:高中数学 来源: 题型:
【题目】如图所示,直四棱柱ABCD﹣A1B1C1D1内接于半径为
的半球O,四边形ABCD为正方形,则该四棱柱的体积最大时,AB的长是( ) ![]()
A.1
B.![]()
C.![]()
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )
A.
种 B.
种 C.
种 D.
种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn . 已知a1=1,
=an+1﹣
n2﹣n﹣
,n∈N* .
(1)求数列{an}的通项公式;
(2)设数列{bn}满足an﹣an﹣1=bna
,求数列{bn}的n前项和Tn;
(3)是否存在实数λ,使得不等式λa
﹣
+a
+
≥0恒成立,若存在,求出λ的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cos(ωx+
)(其中ω>0,x∈R)的最小正周期为10π.
(1)求ω的值;
(2)设α,β∈[0,
],f(5α+
)=﹣
,f(5β﹣
)=
,求cos(α+β)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的短轴长为
,椭圆
上任意一点到右焦点
距 离的最大值为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过点
作直线
与曲线
交于
两点,点
满足
(
为坐标原点),求四边形
面积的最大值,并求此时的直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com