精英家教网 > 高中数学 > 题目详情
1.已知等差数列{an}的前n项和为Sn,S7=0,a3-2a2=12.
(1)求数列{an}的通项公式;
(2)求Sn-15n+50的最小值.

分析 (1)利用等差数列的性质求出数列的第4项,然后求解数列的首项与公差,即可求解通项公式.
(2)求出等差数列的前n项和,利用二次函数的性质,求解和的最小值.

解答 解:(1)由S7=0得7a4=0…2
所以$\left\{{\begin{array}{l}{{a_1}+3d=0}\\{{a_1}+2d-2({{a_1}+d})12}\end{array}}\right.$
解得a1=-12,d=4…4
所以数列{an}的通项公式为an=4n-16…5
(2)${S_n}=\frac{{n({{a_1}+{a_n}})}}{2}=\frac{{n({-12+4n-16})}}{2}=2{n^2}-14n$…7
所以${S_n}-15n+50=2{n^2}-29n+50$=$2{({n-\frac{29}{4}})^2}-\frac{441}{8}$…9
因为$n∈{N^*},且|{7-\frac{29}{4}}|<|{8-\frac{29}{4}}|$
所以当n=7时,Sn-15n+50的最小值为2×72-29×7+50=-55…10

点评 本题考查等差数列和的求法,通项公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.不等式|x+3|-|x-1|≤2a对任意实数x恒成立,则实数a的取值范围是(  )
A.(-∞,-2]B.(-∞,-2]∪[2,+∞)C.[2,+∞)D.a∈R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=f(x)=x2+1,则在x=2,△x=0.1时,△y的值为(  )
A.0.40B.0.41C.0.43D.0.44

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=mx2-mx-2.
(1)若对于一切实数x,f(x)<0恒成立,求实数m的取值范围;
(2)若对于x∈[1,3],f(x)<-m+5恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是(  )
A.45和47B.45 和44C.45和42D.45和45

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|x2-x-2<0},B=$\{x|y=lg\frac{1-x}{1+x}\}$,在区间(-3,3)上任取一实数x,则x∈A∩B的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦点为F(-c,0),离心率为$\frac{{\sqrt{3}}}{3}$,点M在椭圆上,直线FM的斜率为$\frac{{\sqrt{3}}}{3}$,直线FM被圆x2+y2=$\frac{1}{2}$截得的线段的长为c.
(1)求椭圆的方程;
(2)设动点P在椭圆上,若直线FP的斜率大于$\sqrt{2}$,求直线OP(O为原点)的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图所示,有一圆锥形容器,其底面半径等于圆锥的高,若以72πcm3/s的速度向该容器注水,则水深10cm时水面上升的速度为$\frac{18}{25}$cm/s.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.点(2,$\frac{π}{3}$)的平面直角坐标是(  )
A.$(2,\sqrt{3})$B.$(1,\sqrt{3})$C.$(\sqrt{3},1)$D.$(\sqrt{3},2)$

查看答案和解析>>

同步练习册答案