13£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ×ó½¹µãΪF£¨-c£¬0£©£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{3}$£¬µãMÔÚÍÖÔ²ÉÏ£¬Ö±ÏßFMµÄбÂÊΪ$\frac{{\sqrt{3}}}{3}$£¬Ö±ÏßFM±»Ô²x2+y2=$\frac{1}{2}$½ØµÃµÄÏ߶εij¤Îªc£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©É趯µãPÔÚÍÖÔ²ÉÏ£¬ÈôÖ±ÏßFPµÄбÂÊ´óÓÚ$\sqrt{2}$£¬ÇóÖ±ÏßOP£¨OΪԭµã£©µÄбÂʵÄȡֵ·¶Î§£®

·ÖÎö £¨1£©Í¨¹ýÀëÐÄÂÊ£¬¼ÆËã¿ÉµÃa2=3c2¡¢b2=2c2£¬ÉèÖ±ÏßFMµÄ·½³ÌΪ$y=\frac{{\sqrt{3}}}{3}£¨{x+c}£©$£¬ÀûÓù´¹É¶¨Àí¼°ÏÒÐľ๫ʽ£¬¼ÆËã¿ÉµÃa2=3£¬b2=2£¬¼´¿ÉÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©É趯µãPµÄ×ø±êΪ£¨x£¬y£©£¬·Ö±ðÁªÁ¢Ö±ÏßFP¡¢Ö±ÏßOPÓëÍÖÔ²·½³Ì£¬·Öx¡Ê£¨-$\frac{3}{2}$£¬-1£©Óëx¡Ê£¨-1£¬0£©Á½ÖÖÇé¿öÌÖÂÛ¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©ÓÉÒÑÖªÓÐ$\frac{c^2}{a^2}=\frac{1}{3}$£¬ÓÖa2=b2+c2£¬¿ÉµÃa2=3c2£¬b2=2c2
ÉèÖ±ÏßFMµÄ·½³ÌΪ$y=\frac{{\sqrt{3}}}{3}£¨{x+c}£©$£¬ÓÉÔ²Ðĵ½Ö±ÏßFMµÄ¾àÀ빫ʽ¿ÉµÃ${d^2}={£¨{\frac{{\frac{{\sqrt{3}}}{3}c}}{{\sqrt{1+\frac{1}{3}}}}}£©^2}=\frac{c^2}{4}⇒{d^2}+{£¨{\frac{c}{2}}£©^2}=\frac{1}{2}⇒c=1$£¬¡àa2=3£¬b2=2
¹ÊËùÇóµÄÍÖÔ²·½³ÌΪ$\frac{x^2}{3}+\frac{y^2}{2}=1$£»
£¨2£©ÉèµãPµÄ×ø±êΪ£¨x£¬y£©£¬Ö±ÏßFPµÄбÂÊΪt£¬FP£ºy=t£¨x+1£©£¨x¡Ù-1£©
ÁªÁ¢$\left\{\begin{array}{l}y=t£¨{x+1}£©\\ \frac{x^2}{3}+\frac{y^2}{2}=1\end{array}\right.$ÏûÈ¥yÕûÀí$2{x^2}+3{t^2}{£¨{x+1}£©^2}=6⇒t=\sqrt{\frac{{6-2{x^2}}}{{3{{£¨{x+1}£©}^2}}}}£¾\sqrt{2}$£¬
¿É½âµÃ$-\frac{3}{2}£¼x£¼-1$»ò-1£¼x£¼0£®
ÔÙÉèÖ±ÏßOPµÄбÂÊΪ$m£¬⇒m=\frac{y}{x}£¬y=mx£¨{x¡Ù0}£©$£¬
ÔÙÁªÁ¢$\left\{\begin{array}{l}y=mx\\ \frac{x^2}{3}+\frac{y^2}{2}=1\end{array}\right.⇒{m^2}=\frac{2}{x^2}-\frac{2}{3}$
 ¢Ùµ±$-\frac{3}{2}£¼x£¼-1$ʱ£¬y=t£¨x+1£©£¼0⇒m£¾0¹Ê$m=\sqrt{\frac{2}{x^2}-\frac{2}{3}}$µÃ$m¡Ê£¨{\frac{{\sqrt{2}}}{3}£¬\frac{{2\sqrt{3}}}{3}}£©$
 ¢Úµ±-1£¼x£¼0ʱ£¬y=t£¨x+1£©£¼0⇒m£¼0¹Ê$m=-\sqrt{\frac{2}{x^2}-\frac{2}{3}}$µÃ$m¡Ê£¨{-¡Þ£¬-\frac{{2\sqrt{3}}}{3}}£©$
×ÛÉÏÖ±ÏßOPµÄбÂÊmµÄȡֵ·¶Î§$m¡Ê£¨{-¡Þ£¬-\frac{{2\sqrt{3}}}{3}}£©¡È£¨{\frac{{\sqrt{2}}}{3}£¬\frac{{2\sqrt{3}}}{3}}£©$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³ÌºÍ¼¸ºÎÐÔÖÊ¡¢Ö±Ïß·½³ÌºÍÔ²µÄ·½³Ì¡¢Ö±ÏßÓëÔ²µÄλÖùØÏµ¡¢Ò»Ôª¶þ´Î²»µÈʽµÈ»ù´¡ÖªÊ¶£¬¿¼²éÓôúÊý·½·¨Ñо¿Ô²×¶ÇúÏßµÄÐÔÖÊ£¬¿¼²éÔËËãÇó½âÄÜÁ¦¡¢ÒÔ¼°Óú¯ÊýÓë·½³Ì˼Ïë½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{2\sqrt{2}}{3}$£¬ÍÖÔ²CµÄÓÒ½¹µãµ½Ö±Ïßx=$\frac{a}{e}$µÄ¾àÀëΪ$\frac{\sqrt{2}}{4}$£¬ÍÖÔ²CµÄ϶¥µãΪD£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©Èô¹ýDµã×÷Á½ÌõÏ໥´¹Ö±µÄÖ±Ïß·Ö±ðÓëÍÖÔ²CÏཻÓÚµãP£¬M£®ÇóÖ¤£ºÖ±ÏßPM¾­¹ýÒ»¶¨µã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚ³¤·½ÌåABCD-A1B1C1D1ÖУ¬AB=$\sqrt{2}$£¬BC=AA1=1£¬µãPΪ¶Ô½ÇÏßAC1Éϵ͝µã£¬µãQΪµ×ÃæABCDÉϵ͝µã£¨µãP£¬Q¿ÉÒÔÖØºÏ£©£¬ÔòB1P+PQµÄ×îСֵΪ$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬S7=0£¬a3-2a2=12£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóSn-15n+50µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=$\frac{2}{x+1}$£¬µãOÎª×ø±êÔ­µã£¬µãAn£¨n£¬f£¨n£©£©£¨n¡ÊN*£©£¬ÏòÁ¿$\overrightarrow j=£¨0£¬1£©$£¬¦ÈnÊÇÏòÁ¿$\overrightarrow{O{A_n}}$Óë$\overrightarrow j$µÄ¼Ð½Ç£¬Ôò$\frac{{cos{¦È_1}}}{{sin{¦È_1}}}+\frac{{cos{¦È_2}}}{{sin{¦È_2}}}+\frac{{cos{¦È_1}}}{{sin{¦È_1}}}+¡­+\frac{{cos{¦È_{2016}}}}{{sin{¦È_{2016}}}}$=£¨¡¡¡¡£©
A£®$\frac{2015}{1008}$B£®$\frac{2017}{2016}$C£®$\frac{2016}{2017}$D£®$\frac{4032}{2017}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªÊýÁÐ{an}ǰnÏîºÍÂú×ãSn-Sn-1=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$£¨n¡Ý2£©£¬a1=1£¬Ôòan=2n-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªÉÈÐεİ뾶Ϊ3cm£¬Ô²ÐĽÇΪ60¡ã£¬ÔòÉÈÐεÄÃæ»ýΪ$\frac{3¦Ð}{2}$cm2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬¶ÔÈÎÒâµÄn¡ÊN*£¬µã£¨n£¬Sn£©ÔÚ¶þ´Îº¯Êýf£¨x£©=x2µÄͼÏóÉÏ£®
£¨¢ñ£©ÇóͨÏʽan£»
£¨¢ò£©Éèbn=$\frac{{a}_{n}}{{2}^{n}}$£¬ÇÒn¡ÊN*£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÎÞÂÛkΪºÎֵʱ£¬Ö±Ïߣ¨k+2£©x+£¨1-k£©y-4k-5=0¶¼ºã¹ý¶¨µãP£®ÇóPµãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸