精英家教网 > 高中数学 > 题目详情
12.已知函数y=f(x)=x2+1,则在x=2,△x=0.1时,△y的值为(  )
A.0.40B.0.41C.0.43D.0.44

分析 根据△y=f(x+△x)-f(x),代入数据计算即可.

解答 解:∵f(x)=x2+1,在x=2,△x=0.1,
∴△y=f(x+△x)-f(x)=f(2+0.1)-f(2)=(2.1)2+1-(22+1)=0.41.
故选:B.

点评 本题主要考查了函数的变化率,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点为A(-1,0),右焦点为F2($\sqrt{3}$,0),则双曲线的渐近线方程为(  )
A.y=±$\sqrt{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{2\sqrt{2}}{3}$,椭圆C的右焦点到直线x=$\frac{a}{e}$的距离为$\frac{\sqrt{2}}{4}$,椭圆C的下顶点为D.
(1)求椭圆C的标准方程;
(2)若过D点作两条相互垂直的直线分别与椭圆C相交于点P,M.求证:直线PM经过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=lg(1+x)-lg(1+ax)是奇函数,则实数a的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知e=2.71828…,设函数f(x)=$\frac{1}{2}$x2-bx+alnx存在极大值点x0,且对于b的任意可能取值,恒有极大值f(x0)<0,则下列结论中正确的是(  )
A.存在x0=$\sqrt{a}$,使得f(x0)<-$\frac{1}{e}$B.存在x0=$\sqrt{a}$,使得f(x0)>-e
C.a的最大值为e3D.0<a<e3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若f(2)=3,f′(2)=-3,则$\underset{lim}{x→2}$$\frac{3x-2f(x)}{x-2}$=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在长方体ABCD-A1B1C1D1中,AB=$\sqrt{2}$,BC=AA1=1,点P为对角线AC1上的动点,点Q为底面ABCD上的动点(点P,Q可以重合),则B1P+PQ的最小值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}的前n项和为Sn,S7=0,a3-2a2=12.
(1)求数列{an}的通项公式;
(2)求Sn-15n+50的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,对任意的n∈N*,点(n,Sn)在二次函数f(x)=x2的图象上.
(Ⅰ)求通项公式an
(Ⅱ)设bn=$\frac{{a}_{n}}{{2}^{n}}$,且n∈N*,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案