| A. | $[{-\frac{10}{3},\frac{7}{6}}]$ | B. | $({-\frac{10}{3},\frac{7}{6}})$ | C. | $[{\frac{7}{6},+∞})$ | D. | $({-\frac{11}{6},\frac{7}{6}})$ |
分析 分析:根据题意求出函数的导数并且通过导数求出出原函数的单调区间,进而得到函数$y=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-2x$的极值,从而求出k的范围.
解答 解:由题意可得:y=f′(x)=x2-x-2.
令f′(x)>0,则x>2或x<-1,令f′(x)<0,则-1<x<2,
所以函数f(x)的单调增区间为(-∞,-1)和(2,+∞),减区间为(-1,2),
所以当x=-1时函数有极大值f(-1)=$\frac{7}{6}$,当x=2时函数有极小值f(2)=-$\frac{10}{3}$,
若函数$y=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-2x$的图象与函数y=k的图象恰有三个不同的交点
因为函数f(x)存在三个不同的零点,
所以f(-1)>0并且f(2)<0,
∴实数k的取值范围是 (-$\frac{10}{3}$,$\frac{7}{6}$).
故选:B.
点评 解决此类问题的关键是熟练掌握利用导数球函数的单调区间与函数的极值问题,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {2,3} | C. | {1,2,4} | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com