精英家教网 > 高中数学 > 题目详情
1.已知函数$f(x)=\frac{1}{2}{x^2}-alnx$,(其中常数a∈R).
(1)若f(x)在x=1时取得极值,求a的值.
(2)若a=2,求f(x)的单调区间.

分析 (1)若f(x)在x=1时取得极值,则f′(1)=0,根据已知中函数的解析式,求出导函数的解析式,代入即可构造关于a的方程,解方程即可得到答案.
(2)求出导函数的解析式,解关于导函数的不等式,即可确定f(x)的单调区间;

解答 解:(1)f(x)的定义域是(0,+∞),
f′(x)=x-$\frac{a}{x}$,
∵f′(1)=0,解得:a=1;
(2)a=2时,f(x)=$\frac{1}{2}$x2-2lnx,f′(x)=$\frac{{x}^{2}-2}{x}$,
令f′(x)>0,解得:x>$\sqrt{2}$,令f′(x)<0,解得:0<x<$\sqrt{2}$,
∴f(x)在(0,$\sqrt{2}$)递减,在($\sqrt{2}$,+∞)递增.

点评 本题考查了曲线的切线方程问题,考查导数的应用以及函数的单调性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若函数$y=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-2x$的图象与函数y=k的图象恰有三个不同的交点,则实数k的取值范围为(  )
A.$[{-\frac{10}{3},\frac{7}{6}}]$B.$({-\frac{10}{3},\frac{7}{6}})$C.$[{\frac{7}{6},+∞})$D.$({-\frac{11}{6},\frac{7}{6}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax3-3x2+1-$\frac{3}{a}$.
(1)求函数f(x)的单调区间;
(2)若A(x1,y1),B(x2,y2)为曲线y=f(x)上两点,线段AB与x轴有公共点,且x1,x2均为y=f(x)的极值点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=ax3+3x2+3x(a≠0).
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)在区间(1,2)内是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)的导函数图象如图所示,若△ABC为钝角三角形,且∠C为钝角,则一定成立的是(  )
A.f(cosA)<f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(cosB)D.f(sinA)>f(sinB)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=mlnx+\frac{3}{2}{x^2}-4x$.
(1)若曲线y=f(x)在x=1处的切线与y轴垂直,求函数f(x)的极值;
(2)设g(x)=x3-4,若h(x)=f(x)-g(x)在(1,+∞)上单调递减,求实数m的取值范围,并分析方程$2lnx+\frac{3}{2}{x^2}+4={x^3}+4x$在(1,+∞)上实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.写出命题“如果x=3或x=7,则(x-3)(x-7)=0”的逆命题、否命题和逆否命题,并判断真假.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.定义运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,则符合条件$|\begin{array}{l}{z}&{1+2i}\\{1-i}&{1+i}\end{array}|$=0的复数z为2-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在空间直角坐标系中的点P(a,b,c),有下列叙述:
①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,-b,c);
②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,-b,-c);
③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,-b,c);
④点P(a,b,c)关于坐标原点的对称点为P4(-a,-b,-c).
其中正确叙述的个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

同步练习册答案