精英家教网 > 高中数学 > 题目详情
9.“n>m>0”是方程“mx2+ny2=1表示焦点在x轴上的椭圆”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

分析 方程“mx2+ny2=1表示焦点在x轴上的椭圆”?$\frac{1}{m}>\frac{1}{n}$>0?n>m>0.即可判断出结论.

解答 解:方程“mx2+ny2=1表示焦点在x轴上的椭圆”?$\frac{1}{m}>\frac{1}{n}$>0?n>m>0.
“n>m>0”是方程“mx2+ny2=1表示焦点在x轴上的椭圆”的充要条件.
故选:C.

点评 本题考查了椭圆的标准方程及其性质、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=|x+4|.
(1)若y=f(2x+a)+f(2x-a)最小值为4,求a的值;
(2)求不等式f(x)>1-$\frac{1}{2}$x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆O1:x2+y2=1,圆O2:(x+4)2+(y-a)2=25,如果这两个圆有且只有一个公共点,则常数a=±2$\sqrt{5}$或0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,某地区有四个公司分别位于矩形ABCD的四个顶点,且AB=1km,BC=2km,四个公司商量准备在矩形空地中规划一个三角形区域AMN种植花草,其中M,N分别在直线BC,CD上运动,∠MAN=30°,设∠BAM=α,当三角AMN的面积最小时,此时α=(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知变量x,y满足$\left\{{\begin{array}{l}{1≤x+y≤3}\\{-1≤x-y≤1}\end{array}}\right.$,若目标函数z=2x+y取到最大值a,则(x+$\frac{1}{x}$-2)a的展开式中x2的系数为(  )
A.-144B.-120C.-80D.-60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=\sqrt{x}sinx$,则f'(π)=(  )
A.$\sqrt{π}$B.$\frac{{\sqrt{π}}}{2π}$C.$-\sqrt{π}$D.$\frac{{\sqrt{2π}}}{2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知菱形ABCD的边长为2,∠ABC=60°,则$\overrightarrow{BD}•\overrightarrow{CD}$=(  )
A.-6B.-3C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2-2x,设$g(x)=\frac{1}{x}•f({x+1})$.
(1)求函数g(x)的表达式,并求函数g(x)的定义域;
(2)判断函数g(x)的奇偶性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=kx,g(x)=$\frac{lnx}{x}$,若关于x的方程f(x)=g(x),在区间[$\frac{1}{e}$,e]内有两个实数解,则实数k的取值范围是(  )
A.[$\frac{1}{{e}^{2}}$,$\frac{1}{2e}$)B.($\frac{1}{2e}$,$\frac{1}{e}$]C.(0,$\frac{1}{{e}^{2}}$)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

同步练习册答案