分析 把已知数列递推式变形,可得数列{${a}_{n}-\sqrt{2}$}构成以$2-\sqrt{2}$为首项,以$\sqrt{2}-1$为公比的等比数列,求出等比数列的通项公式后,可得{an}的通项公式;
变式:把已知等式两边取对数,然后构造等比数列{$lg{a}_{n}+\frac{1}{2}lg2$}求得答案.
解答 解:由an+1=($\sqrt{2}$-1)(an+2)=$(\sqrt{2}-1){a}_{n}+2\sqrt{2}-2$,得
${a}_{n+1}-\sqrt{2}=(\sqrt{2}-1)({a}_{n}-\sqrt{2})$,
∵${a}_{1}-\sqrt{2}=2-\sqrt{2}≠0$,
∴数列{${a}_{n}-\sqrt{2}$}构成以$2-\sqrt{2}$为首项,以$\sqrt{2}-1$为公比的等比数列,
则${a}_{n}-\sqrt{2}=\sqrt{2}(\sqrt{2}-1)•(\sqrt{2}-1)^{n-1}=\sqrt{2}(\sqrt{2}-1)^{n}$,
则${a}_{n}=\sqrt{2}(\sqrt{2}-1)^{n}+\sqrt{2}$,
故答案为:${a}_{n}=\sqrt{2}(\sqrt{2}-1)^{n}+\sqrt{2}$;
变式:由a1=2,an+1=2an3,可知an>0,
两边取对数,得lgan+1=3lgan+lg2,
∴$lg{a}_{n+1}+\frac{1}{2}lg2=3(lg{a}_{n}+\frac{1}{2}lg2)$,
∵$lg{a}_{1}+\frac{1}{2}lg2=\frac{3}{2}lg2≠0$,
∴数列{$lg{a}_{n}+\frac{1}{2}lg2$}构成以$\frac{3}{2}lg2$为首项,以3为公比的等比数列,
则$lg{a}_{n}+\frac{1}{2}lg2={3}^{n-1}•\frac{3}{2}lg2=\frac{{3}^{n}}{2}lg2$,
∴$lg{a}_{n}=\frac{{3}^{n}}{2}lg2-\frac{1}{2}lg2=\frac{1}{2}({3}^{n}-1)lg2$,
则${a}_{n}={2}^{\frac{1}{2}({3}^{n}-1)}$.
故答案为:${a}_{n}={2}^{\frac{1}{2}({3}^{n}-1)}$.
点评 本题考查数列递推式,考查了等比关系的确定,考查了对数的运算性质,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 96 | B. | 72 | C. | 60 | D. | 30 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$ | B. | $\frac{7}{3}$ | C. | $\frac{7}{2}$ | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | sin1•f($\frac{1}{2}$)>sin$\frac{1}{2}$•f(1) | B. | $\frac{1}{2}$•f($\frac{1}{2}$)>sin$\frac{1}{2}$•f($\frac{π}{6}$) | ||
| C. | sin2•f(1)>sin1•f(2) | D. | f($\frac{π}{3}$)>$\sqrt{3}$f($\frac{π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | $\sqrt{3}$ | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com