精英家教网 > 高中数学 > 题目详情
11.已知$\frac{tanα}{tanα-1}$=-1,则cos2($\frac{π}{2}$+α)-sin(π-α)cos(π+α)+2=$\frac{13}{5}$.

分析 求出tanα,进而使用同角三角函数的关系解出sin2α,cos2α,使用诱导公式化简即可得出答案.

解答 解:∵$\frac{tanα}{tanα-1}$=-1,∴tanα=$\frac{1}{2}$.∴sinα=$\frac{1}{2}cosα$.
∵sin2α+cos2α=1,∴sin2α=$\frac{1}{5}$,cos2α=$\frac{4}{5}$.
∴cos2($\frac{π}{2}$+α)-sin(π-α)cos(π+α)+2=sin2α+sinαcosα+2
=sin2α+$\frac{1}{2}$cos2α+2=$\frac{1}{5}+\frac{1}{2}×\frac{4}{5}+2$=$\frac{13}{5}$.
故答案为:$\frac{13}{5}$.

点评 本题考查了使用诱导公式进行化简求值,要熟练掌握公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.某射击训练基地教练为了对某运动员的成绩做一分析,随机抽取该名运动员的t次射击成绩作为一个样本,根据此数据做出了频数与频率的统计表和频率分布直方图如下:
分组频数频率
[8.4,8.9)90.15
[8.9,9.4)m0.3
[9.4,9.9)24n
[9.9,10.4)qp
[10.4,10.9)30.05
合计t1
(I)求表中t,p及图中a的值;
(Ⅱ)在所取的样本中,从不少于9.9环的成绩中任取3次,X表示所取成绩不少于10.4的次数,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y2=2px(p>0)上的点M的横坐标为2,且|MF|=3,F是抛物线的焦点.
(1)求抛物线C的方程;
(2)过点M(-1,0)的直线l与抛物线C相交于A、B两点.设线段AB的中点为P,记直线FA,FB,FP的斜率分别为k1,k2,k3,求当k1k2+k3+1=0时的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知如图所示,已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,求作:$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{a}$-$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题:①三角形是一个是平面;②平行四边形是一个平面;③梯形是一个平面图形;④四边相等的四边形是菱形.其中正确的是(  )
A.B.①②C.①②③D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.数列{an}中a1=2,an+1=($\sqrt{2}$-1)(an+2),n∈N*,则{an}的通项公式为${a}_{n}=\sqrt{2}(\sqrt{2}-1)^{n}+\sqrt{2}$.
变式:已知数列{an}中a1=2,an+1=2an3,n∈N*,则{an}的通项公式为${a}_{n}={2}^{\frac{1}{2}({3}^{n}-1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求经过两点A,B的直线的斜率和倾斜角,并判断这条直线的倾斜角是锐角还是钝角.
(1)A(2,3),B(4,7);
(2)A(-2,-2),B(1,-3);
(3)A(m,2$\sqrt{3}$m+$\sqrt{3}$),B(2m-1,3$\sqrt{3}$m),其中m∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知A(-1,0)、B(2,1)、C(5,-8),△ABC的外接圆在点A处的切线为l,则点B到直线l的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,点D是A1C1的中点,则异面直线AD和BC1所成角的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案