精英家教网 > 高中数学 > 题目详情
18.在口袋中有不同编号的5个白球和4个黑球,如果不放回地依次取两个球,则在第一次取到白球的条件下,第二次也取得白球的概率是$\frac{1}{2}$.

分析 设已知第一次取出的是白球为事件A,第二次也取到白球为事件B,先求出P(AB)的概率,然后利用条件概率公式进行计算即可.

解答 解:设已知第一次取出的是白球为事件A,第二次也取到白球为事件B.
则由题意知,P(A)=$\frac{5}{9}$,P(AB)=$\frac{5×4}{9×8}$=$\frac{5}{18}$,
所以已知第一次取出的是白球,则第二次也取到白球的概率为P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题主要考查条件概率的求法,熟练掌握条件概率的概率公式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知等比数列{an}各项都为正数,且满足a2=2,a6=6,a4=(  )
A.4B.8C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.两直线x-2y+7=0和2x+y-1=0的交点坐标为(  )
A.(1,3)B.(-1,3)C.(3,-1)D.(-3,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a,b,x,y均为正数,a≠b,求证:$\frac{a^2}{x}$+$\frac{b^2}{y}$≥$\frac{{{{({a+b})}^2}}}{x+y}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足a1=4,an+2an+1=6,则a4=$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.盒中装有12个小球,除颜色外其余均相同,其中9个白的,3个红的,从盒中取3个(不管是否是红色)均染成红色后再放回盒中,此时盒中红色球个数ξ是一个随机变量,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知p:|m-$\frac{x-1}{3}}$|≤2;q:|x-2|+|x-3|>3.若¬p是¬q的必要不充分条件.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知长方体ABCD-A1B1C1D1中,AB=4,BC=3,AA1=5,则异面直线BD1与AC所成角的余弦值为$\frac{{7\sqrt{2}}}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.经过点M(-3,-3)的直线l被圆x2+y2+4y-21=0所截得的弦长为4$\sqrt{5}$,则直线l的方程为  (  )
A.x-2y+9=0或x+2y+3=0B.2x-y+9=0或2x+y+3=0
C.x+2y+3=0或x-2y+9=0D.x+2y+9=0或2x-y+3=0

查看答案和解析>>

同步练习册答案